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1) Introduction

Superstring theory as quantum gravity
= d Many evidences e.g.microscopic derivation of BH entropy.

However, we still do not have any good controls of quantum
gravity in non-trivial spacetimes such as time-dependent and highly
curved ones, which are very important in e.g. cosmology.

= We need to understand the non-perturbative dynamics of
string theory.



Many of string theorists have noticed that the holographic
principle can be a very important clue for this purpose.

Ex. AdS/CFT [Maldacene 97] = a non-perturbative formulation

of quantum gravity on AdS in terms of QFTs.

However, we do not understand the mechanism of holographic
principle so deeply as to apply the holography to other different
backgrounds such as the flat space or de-Sitter space.

= We need to understand how the holography works.

(This is the main motivation of this talk.)



Claim: The quantum entanglement can be a key concept to
understand the holography.

d+1 dim. _
aM d+2 dim.

Boundary Bulk
‘ Holography ‘

Quantum many-body system =  (Quantum) gravity

) 8 uv

‘ [Ryu-TT 06] ‘

Entanglement entropy (EE) = \Area of minimal surfacS

~
+ quantum corrections




Advantages of EE

 EE is defined for any quantum many-body systems. = Universal
(In cond-mat, EE = a quantum order parameter)

* Inthe presence of quantum corrections, the metric may not
be a good description of the spacetime. But, the EE is robust.

 EE can capture spacetime topologies. For example,

o
%\e
ﬁ EE>0

o;
A B ‘@of%%d Q ® Q EE=0



(@ Holographic Entanglement Entropy

(2-1) Definition of Entanglement Entropy

Divide a quantum system into _
two subsystems A and B. HtOt - HA ®[_[B ‘

Example: Spin Chain

)
4$pocoocecoo0 = oo

Define the reduced density matrix O, for A by IOA = TI‘BIOW .
taking trace over the Hilbert space of B .
Now the entanglement entropy SA is defined

by the von-Neumann entropy: N: tm}e slice

S,=-Tr, p,logp,. B @«—aA _ B




(2-2) Area law [Bombelli-Koul-Lee-Sorkin 86, Srednicki 93]

EE in QFTs includes UV divergences.

Area Law
In a d+1 dim. QFT (d>1) with a UV fixed point, the leading term of

EE at its ground state behaves like
Area(0A)

d-1
a

S, ~ + (subleading terms),

where ¢ is a UV cutoff (i.e. lattice spacing). [d=1: log div.]

Intuitively, this property is understood like:

0

Most strongly entangled ———




(2-3) Holographic Entanglement Entropy (HEE)

~ Area(y,)

S
4G,

[Ryu-TT 06]

d
—dt’ + Yy dx; +dz”

2
z

2 2
ds’sus = R

Y & is the minimal area surface Cf{dﬂ Ade 2
| +

(codim.=2) such that

0A=0dy, and A~y, .

homologous

Note: In time-dependent b.g.,
we need to employ the covariant
version [Hubeny-Rangamani-TT 07].

%W@ omit the time direction.)

B Z

G

z>¢ (UV cutoff)




An Intuitive Interpretation of HEE

Here we employ the global coordinate of AdS space and
take its time slice at t=t,,

The information in B
is encoded here.

p —+

Adsd+2

in global Coordinate



* In spite of a heuristic argument [Fursaev, 06], there has been no
complete proof. But, so many evidences and no counter examples.

[A Partial List of Evidences]

> Area law [Ryu-TT 06]

» Analytical Agreements in AdS3/CFT2 [Ryu-TT 06]
» Strong subadditivity [Headrick-TT 07]

» Disconnected subsystems [Headrick 10, (CFT: Calabrese-Cardy-Tonni
09)]

» Agreements on the coefficients of log term in 4d CFT (~a+c)

[Ryu-TT 06, Solodukhin 08,10, Lohmayer-Neuberger-Schwimmer-Theisen 09,
Dowker 10, Casini-Huerta, 10, Myers-Sinha 10]

» Adirect proof when A =round ball [Casini-Hueta-Myers 11]
» Cadney-Linden-Winter inequality (and Monogamy)
[Hayden-Headrick-Maloney 11]
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(2-4) General Behavior of HEE  [ryu-TT 06]

2
]Zd/ }Qd

S =
1 2GIT(d 2)

Pa-

* /
pd—Z(_

a

;

[

[

d-1 l d-3
(L) e
a

_) +p, (if d =even) - Arealaw div.

.

A

Dl

—» Central charges

+ logr—\ (if d=»
)

u\,l}

[Ryu-TT 06, Solodukhin 08,10,

where p, = (d _ _1,]93 _ —(d _ 2) /[2(d _ 3)],”” Lohmayer-Neuberger-
..... g =D d-2)N/(d -

A universal quantity which
characterizes odd dim. CFT. =F-theorem in 3 dim. CFTs

(Renormalized EE)
[Liu-Mezei 12, Myers-Singh 12]

Schwimmer-Theisen 09,
Dowker 10, Casini-Huerta, 10,
Myers-Sinha 10, Casini-Hueta-
Myers 11]

[Jafferis-Klebanov-Pufu-Safdi 11
Proof: Casini-Huerta 12

See also Klebanov-Nishioka-Pufu-Safdi 12,
Closset-Dumitrescu-Festuccia-Komargodski-Seiberg 12]



(2-5) Construction of an entangled pair in AdS/BCFT

[Fujita-Tonni-TT 11]

2 2
{(t,x,z)EAa’S3 —t* +x’ +(z—rD sinh'(;;) z(rD cosh’(;) }

< A pair of CFTs on semi -infinite intervals

Two BCFTs (z=0)
A and B are causally disconnected



AdS/BCFT Proposal [1T 11]

In addition to the standard AdS boundary M, we include
an extra boundary Q, such that 0 Q=90 M.

1

J. =—
164G,

|
j;\, \/E(R —2A - Lmatter) - EL \/Z(K — Lgaatter

EOM at boundary leads to the

Neumann b.c.on Q: Q
_ Q
K, -Kh, =31G,T,
. 0 Z
Conformal inv. = Tab = _Thab° —_—

).



In the BCFT side, these two BCFTs are entangled with each other.
The entanglement entropy between them is calculated as

R IR %

4GN ,,.Dep*/ R z

5,

Note: The g-theorem prohibits the entanglement between
regions which are causally connected. (No wormholes !)



3 Application of HEE to Condensed Matter

(3-1) EE and Fermi Surfaces

In d+1 dimension, if there exist Fermi surfaces, EE

violates the area law logarithmically: [(wolf 05, Gioev-Klich 05]

S, ~[=

a

d-1

logi.
a

E

Fermi suxface

ek

F

Notel: as typical in cond-mat, this argument assumes a’ ~ k. .

Note2: The low-energy excitations around a Fermi surface

are approximated by copies of 2d CFTs.

[Interacting case (Non Fermi liquids): Zhang-Grover-Vishwanath 11]



Instead, from QFT viewpoints = a_l >> kF

= We expect

S, =(div)+n-(I k) log(l -k, )+

Below we would like to see if we can realize this behavior in HEE.
We assume that all physical quantities can be calculable in the
classical gravity limit (i.e. AO(N?*) Fermi surfaces).

[cf. This assumption does not include the probe fermion system:
Faulkner-Liu-McGreevy-Vegh 09, Cubrovic-Zaanen-Schalm 09]



(3-2) Holographic Analysis

We assume the 4D background metric:

2

R
2 yas
ds” = :

- () + g(2)de* + d* + dv?)

(i) We require the logarithmic behavior of HEE.
(ii) A sensible gravity theory should satisfy the

null energy condition: 7, N*N" =0 for any null vector N*.

= g(n)xz’, flz)xz™" (mzl).



By heating up the system (=creating a black hole),
we obtain the specific heat of the 2+1 dim. Fermi surface
in the low temp. limit:

C T wih as%.

3 [Ogawa-Ugajin-TT 11]

» No Landau Fermi liquids (a=1) are allowed !
Instead, they are non-Fermi liquids.

. . . n 1
Note: this result is universal in the same sense as — = 4— .
S T

Our result does not change even if we take into account higher
derivatives. [See also Kulaxizi-Parnachev-Schalm 12]



Comments: Interesting coincidences ?

AdS: No curvature singularity in
the gravity dual = a=2/3 [Shaghoulian 11]

CMT: Spin fluctuations:
[Moriya, Hertz, Millis .... 70’-90’]
N Fermions + U(1) gauge:
= oa=2/3 (i.e.z=3)
[Lee 09, Metlitski, and S. Sachdev 10,

Mross-McFreevy-Liu-Senthil 10,
Lawler-Barci-Fernandez-Fradkin-Oxman 06]

Experiment: YbRh2(Si1-xGex)2
= a=2/3

Examples of heavy fermions
[Pepin 11]

Compound

H.[P.[x,

x. =005
YbRhy(Siy—xGer)zl HE = 0.66T
I Hi = 0.06T |

S¢ b 001

T-034

CeColns H, =5T

Ce(Cuy—rAuy e
CeClug..  Ag; zo = 0.2
| CeNigGe; || P=0
- (v;_-P!;-/n- -l-f - 0
CeCusSiy ‘ Pec=0

Ce(Nty -, Pd;)Ges x = 0,065

YbAgGe ‘ H =4T

Celny_.Sn, | p. = 26kbar

I"LI)(I-;[H 1): <0

CePd,Si, P.>0
CeRhins

Celn; P.>0

— e e et

Cey_.La,.Ru;Si; | z. =01

z.=10.016 |

i P ~1.6GPa 1




This background is understood as a violation of hyperscaling
= A generalization of Lifshitz spacetime

[Gouteraux-Kiritsis 11, Huijse-Sachdev-Swingle 11 (hidden Fermi surface),
Dong-Harrison-Kachru-Torroba-Wang 12]

(d- (e d
ds® sz =r 4 (— rCV A dr® + Ei-1dxi2)
= C « § o« 797 (@ = hyperscaling violation)
These backgrounds are solutions of Einstein-Scalar-Maxwell theory:

Seus = 1o [dx - g[R-2A-W(P)F, F*" ~d,40"p-V ()]

[Solutions: Gubser-Rocha 09, Charmousis-Goutéraux-Kim-Kiritsis-Meyer 10,
Goldstein-lizuka-Kachru-Prakash-Trivedi-Westphal 10,....
String embeddings of 8=d-1 (log EE) solutions: Dey-Roy, Singh, Narayan 12]



4 Emergent Metric from Quantum Entanglement

(4-1) Basic Outline

In principle, we can obtain a metric from a CFT as follows:

a CFT state = Information (~EE) = Minimal Areas = metric

‘IIJ> SA Area()/A) g/uv

One candidate of such frameworks is so called the entanglement
renormalization (MERA) [vidal 05 (for a review see 0912.1651)] as

pointed out by [Swingle 09].  [cf. Emergent gravity: Raamsdonk 09, Lee 09]



(4-2) Tensor Network (TN)

[See e.g. the review Cirac-Verstraete 09]
Recently, there have been remarkable progresses in numerical
algorithms for quantum lattice models, based on so called

tensor product states.

This leads to various nice variational ansatzs for the ground state
wave functions in various quantum many-body systems.

= An ansatz is good if it respects the quantum entanglement

of the true ground state.



) Tﬁ & M ;(0)

Ex. Matrix Product State (MPS) [DMRG: White 92, ...,
Rommer-Ostlund 95,..]

o =1,2,..., %,

o, =1 or | .

Spin chain ‘
‘qj>= ETr[M(Ul)M(U2)...M(Un)]‘019027...90n>

01,05, 0, n Spins



MPS and TTN are not good near quantum critical points (CFTs)
because their entanglement entropies are too small:

S,<2logy (<<logL~S{").

S,~N.. -logy,

In general,

= min[# Intersections of y ,].

Int




(4-3) AdS/CFT and (c)MERA

MERA (Multiscale Entanglement Renormalization Ansatz):
An efficient variational ansatz to find CFT ground states have been

developed recently. [Vidal 05 (for a review see 0912.1651)].

To respect its large entanglement in a CFT, we add (dis)

entangler Unitary transf.
between 2 spins

—

o, 0, 0y 0,05 0, 0, O, o 0, 0y 0,05 0y 0; Oy



Calculations of EE in 1+1 dim. MERA

S, « Min[#Bonds] « log L
= agrees with 2d CFTs.




A conjectued relation to AdS/CFT [swingle 09]

/ Min [# Bonds]

U =—0o(=uy)

) @

Min[Area]
Y 4

Equivalent ?
Ade+2
u/=0 u = —1
2u 2 2, g2
. . dz” —dt” +d.
Metric = ds® + *— (-dt* +di*) = — = T2
£ z

-Uu

where z=¢-e



Now, to make the connection to AdS/CFT clearer, we would like
to consider the MERA for quantum field theories.

Continuous MERA (cMERA)

[Haegeman-Osborne-Verschelde-Verstraete 11]

M =P-exp(—ijleds[K(s)+L])- u ,

True ground state IR state
(highly entangled) (no entanglement)

= Real space renormalization flow : length scale~ & -e™.

K(u) : disentangler, L: scale transformation

Conjecture

d+1 dim. cMERA = gravityon AdS,,, z=¢-e™".




(4-4) Emergent Metric from cMERA [nozaki-Ryu-TT 12]

We focus on gravity duals of translational invariant static states,

which are not conformal in general.

We conjecture that the metric in the extra direction is given by

using the Bures metric (or Fisher information metric):

g, du 2

N- (1 Wy e | W+ du)

7

N_l Efdxd J(j\eu dkd _ The total volume of phase space

at energy scale u.



Bures Metric

The Bures distance between two states is defined by

Dw,,y,)=1- ‘@jl |I/J2>‘2

More generally, for two mixed states p1 and p2,

D(py, p,) =1—Tf\/\ﬁpzﬁ-

When the state depends on the parameters {¢i},

the Bures metric (Fisher information metric) is defined as
Dly(E)p(& +dE)]= g, dE' d&'.

= Reparameterization invariant (in our case: coordinate u)



iLdu

The operation ¢ removes the coarse-graining procedure

to extract the strength of unitary transformations
(disentanglers ).

= Our metric = the density of disentanglers

/= the metric guu in the gravity dual

Understandable from the HEE:

0
. (d-Du
S, ~ uleu,/gW e

A Y 4

B >u=-logz
%=O Up ==X




(4-5) Emergent Metric in a (d+1) dim. Free Scalar Theory
Hamiltonian: H = % [k Py (=k) + (k% +m*)p()p(=k)].
Ground state ‘1P> : ak‘lP> = ().

Moreover, we introduce the 'IR state’

Q> which has no real
space entanglement.

I

a. Q> =0, a. = m¢(x) + a7 T(x),
ie. [Q)=TT|0), a: =M g(x) - jﬁﬂ(x).

= §5,=0.



For a free scalar theory, the ground state corresponds to
Ru) = % fdkd[;((u)l“(ke‘“ IMata’, +(he))
where I'(X)1sa cutoff function: I'(x) = 6(1-| x ).

1 eZu

2 e amP/M?’

x(s) = (form =0, y(u)=1/2.)

For the excited states, x(s) becomes time-dependent.
One might be tempting to guess

Density of bonds
2u

) .d_iz_gttdtz» \/guu OC|X(M)| ?

e

2 2
dSGravizy = guu dl/l +

E

Indeed, the previous proposal for guu leadto g, = )((u)z



2u

° 2 .d‘iﬂ _gttdtz

Explicit metric  [d5¢,uy = & du” +

E

(i) Massless scalar (E=k)

Az A
Capped off in the IR z<1/m

1
g, = 2 = the pure AdS
(ii) Lifshitz scalar (E=k")
2
g = "7 — the Lifshitz geometry
(iii) Massive scalar
e4u
guu = 2u 2 25N\2 °
4(e™ +m~/AN°)
> 1 N\ -
= ds’ = d22 +( -2 \aw? + g, dt’



(4-6) Excited states after quantum quenches
(4,a, +B.a’,)|¥) =0, (A4, ]F -| B, |*=D).

1/4

2 2 2
m(t) Ak=l (k +;110 ) +( 2k 2) .eikt,
mo 2 k k* +m0
t) 2 1 0> 1/4 12 1/4 )
- e .
| k* k* +m0’

To realized these states, we need to extend the ansatz such that

1/4

K(u) = %fa’kdl"(ke_” /MIg(u)a,:afk + g*(u)aka_kl
= SU(1,1) Bogoliubov transf. Mk(u)
(4, (), B, (1)) =(a,,p,) M, (u).



For a given UV state “P> or equally M, (0) ,
the intermediate state ‘W(u)> or M (u) isdetermined

up to an ambiguity.

This stems from the phase factor ambiguity of wave function:

(Apa; + Bkajk)‘ 1P> =0 = % (4a, + Bkajk)‘ qj> =0.

Our conjecture: / e e
the phase ambiguity 6 (¢) A
< the choice of the time slice /
F(t,u) = const. > U
Uyy = 0 Uip ==




Time dependent metric from the Quantum Quench

Light cone

looks like a propagation of
gravitational wave.

We can also (analytically) confirm the linear growth: SAcct.
This is consistent with the known CFT (2d) .

[Calabrese-Cardy 05]
[HEE under quantum quenches: Arrastia-Aparicio-Lopez 10, Albash-
Johnson 10, Balasubramanian-Bernamonti-de Boer-Copland-Craps-
Keski-Vakkuri-Muller-Schafer-Shigemori-Staessens 10, 11,....]



(4-7) Towards Holographic Dual of Flat Space

If we consider the (almost) flat metric

2 2u 2 2u 2 2u
ds" =e”du” +e"'dx" =g =e",

the corresponding dispersion relation reads

1

X(“)=5’

ko E,
Ek

=e =FE, =e"

k=Ae"
This leads to the highly non-local Hamiltonian:

H = f dxd¢(x)e‘/_72¢(x).

[cf. Li-TT 10]



B Conclusions

The idea of the entanglement renormalization can be
a basic mechanism of the AdS/CFT correspondence.

We explored this connection by examining cMERA and proposed
a metric in the extra dimension purely in terms of QFT data.

Many future problems:

* How to calculate gtt ? Boosting the subsystem ? Finite temp.?
* The effect of Large N limit in cMERA ?

(largen N limit <locality=saturation of entropy bound ?)
* Time slices and diff. inv. in cMERA ?

* Free field theories = Higher spin gauge theory?



Applications of Holography
(AdS/CMT)

Entanglement

Entropy
Basics of .
Holography Studies of
(*gquantum QFTs, CFTs

gravity) (RG-flows etc.)



