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Outline

* The variational method in quantum many-body systems
« Guiding principle: area law for entanglement entropy

« Variational classes for gapped phases:
— Matrix product states for 1+1 D quantum spin systems
— Projected entangled pair states for 2+1 D systems
— Continuous MPS for quantum field theories



Why do we need a variational principle?

1. Central goal in guantum mechanics (particle physics, condensed
matter, quantum chemsitry, ...) is to describe the low-energy (long-
range) physics of (effective) Hamiltonians

— Quantum features most prevalent at low temperature

— For most fermionic systems, room temperature is already very
cold (Fermi T = 10.000 K)

2. The size of the Hilbert space associated to a many-body quantum
system scales exponentially in the number of particles/spins/...

— We have to resort to approximate methods to describe generic
guantum many-body systems

— Physical states are very far from being random: they have nontrivial
local properties!

— Hilbert space is a convenient illusion (Qarry, FV PRL ‘11)



Why do we need a variational principle?

Several of the biggest breakthroughs in quantum many-body
physics involved the variational principle:

— Helium atom (Hylleraas, ...)

— Hartree-Fock for quantum chemistry
Also starting point for conventional QFT

— BCS theory for superconductivity
— Laughlin wavefunctions for fractional quantum Hall effect
— DMRG of S. White for guantum spin systems

The variational principle allows to capture non-perturbative effects
very effectively



The variational method

« Basic principle: given a Hamiltonian H, we would like to identify the
ground state (and more general all low energy states). Instead of
working in the full Hilbert space, we want to find the states with
minimal energy that live in some manifold parameterized by the
parameters X.

— Note: the whole trick is to identify the right manifold!

« Ritz variational principle:

E,(H) < mi (W (x)|H|p(x))
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« |If the system has a gap and the variational wavefunction has an
energy smaller than the first excited state, then the variational
wavefunction has a sizeable overlap with the true ground state



Obviously, the whole trick is to identify the right class of
wavefunctions for the problem at hand

— What are the guiding principles?

In many very relevant cases, slight variations/perturbations on
Gaussian states work extremely well:

— For quantum chemistry, state of the art is the coupled cluster method
(refinement of Hartree-Fock theory)

— BEC: Gaussian, Gross-Pitaevakii, ...

— For quantum field theory in the small coupling regime: perturbation
theory (Feynman diagrams) on top of Gaussians

However, many exotic materials do not fall within this class:
guantum Hall systems, strongly correlated electrons on a lattice
(Hubbard model), ...

— Those systems exhibit nontrivial entanglement



Entanglement

From point of view of quantum information theory, it is a resource

— Quantification: how useful is a quantum state/system to do information theoretic
tasks

« E.g. atomic clocks, quantum communication, quantum computing

From the point of view of numerical simulation strongly correlated quantum
systems, quantum chemistry: enemy nr. 1!

From the point of view of condensed matter and high energy physics: leads to great
things like quantum phase transitions, topological quantum order, ...

Key question: what kind of superpositions appear in nature ?



Quantum spin systems
« Playground for strongly interacting many-body systems

« Have been of intense interest since Heisenberg and Bethe since the
‘30s because of the fact that they provide effective models for
describing magnetism, quantum phase transitions, ...

— More recently: huge surge of interest
due to optical lattice experiments

Simplest model: the Hubbard model
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Area law for entanglement entropy

All low-energy states of local Hamiltonians on the lattice exhibit very
few entanglement (area law)

MBSO

This is a guiding principle: we will create a new class of variational
wavefunctions (tensor networks) that parameterizes all states with
that property



Schmidt coefficients for Ising model in transverse
magnetic field:




Area laws for thermal states of local Hamiltonians

Quantifying the amount of correlations between A and B: mutual information

| g = S(PA)+ S(IOB )_ S(IOAB)
All thermal states exhibit an exact area law (as contrasted to volume law)
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Cirac, Hastings, Wolf, FV. PRL08

» All correlations are localized around the boundary



Area laws

Ground states have extremal local correlations compatible with e.g. translation symmetry; this
gives rise to correlation lengths, and entanglement is shared between particles within this
correlation length. Therefore, the entanglement of a block with the outside scales as the surface
area and not as the volume of the block

Main picture: entanglement / information is concentrated around the boundary
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New guiding principle for interacting systems on
the lattice: area law for entanglement entropy

 The corner in Hilbert space containing such low-energy states can
be fully parameterized by tensor network states : the entanglement
IS distributed in a local way such as to capture the area law in a way
that does not lead to an exponential number of parameters

« Matrix product states (MPS) in 1D
» projected entangled pair states (PEPS) in higher dimensions

* multiscale entanglement renormalization ansatz for critical systems
(Vidal)

In fact, for gapped 1-dimensional quantum spin systems, we can understand all
physics by looking at matrix product states; this allows e.g. for a classification of all
possible phases of 1-D systems using MPS formalism

Same in principle for higher dimensional classifications using PEPS



Tensor network states

— 1D case: Matrix product states, which are generalizations of the valence bond
AKLT-states of Affleck-Kennedy-Lieb-Tasaki (‘88)

DR

Map A:H° ®HP - H®

— Systematic way of constructing translational invariant states

— “Virtual” dimension D encodes the “renormalized” degrees of freedom of the
environment

* Inherently used by Wilson (NRG) and S. White (DMRG): NRG and DMRG are
variational methods within the class of MPS



Matrix product states and area laws

. All MPS exhibit very few block entanglement: S, (,01"L ) <2log D

S, (p): log Trp*®
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« Converse is also true: if the block entropy is measured by Renyi entropies
with ) < ¢y <1 . then small entanglement implies approximable by MPS

suppose VL,N:S_ (pl’fL)s clog L
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Note: log(L) behaviour saturated for critical systems in 1D FV, Cirac , Schuch “06;
Cfr. Peshel, Vidal, Cardy, Korepin, Cardy, Calabrese ... Hastings ‘08



Tensor networks in 2D: PEPS
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Tensor P maps D*
dimensional to d
dimenional space

!{hf\_ﬂil ﬁﬂ@ﬂmﬂl’hﬂ.ﬂf‘jﬁﬁn ﬁﬂ_n.f,- )

Conjecture: any ground state of a local gapped Hamiltonian can be written
efficiently within this form (# parameters is D?)

In this case, the correlation length can diverge

Examples of exotic PEPS: AKLT, RVB, Kitaev’s toric code, Levin-Wen
models, ...

— The order parameters and/or topological features are reflected in the
local symmetry properties of the tensors!






Entanglement spectrum and boundary theories

» consider ground state of 2D theory H':
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« spec(pr) : “entanglement spectrum” of system

* observation: log (spec(pr)) corresponds to spectrum of 1D theory!

— “boundary theory” Hy g

 Dimension mismatch: pr is two-dimensional, H;,,,q iS one-dimensional!

Is there a natural way to obtain a one-dimensional
boundary model from a two-dimensional bulk theory?




Bulk-boundary mapping using PEPS

e illustration of idea in one dimension:
PL
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with symmetries:

p=Vao?VT

« analogously in two dimensions:
pL - 1D stucture of o emerges naturally
=z lz iz iz - 1D boundary theory Hy,..4 via
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full bulk-boundary duality




Numerical study of boundaries with PEPS

» We study models on a cylinder  n;,

« interaction range of Hamiltonian

—— terms with interaction range &

&~
H=ho+hi1+ha+:--+hr+...

di = tr[hi]/2™" : total strength of range- & terms
- “effective temperature” Beg x \/dz2/do (if dy =0)

« numerical methods:
- column-wise transfer operator — N, = oo possible

- arbitrary IV, possible, but limited if we want to compute H = logo

 conversely: boundary theory short-range correlated
— efficient contraction of PEPS possible




Deformed AKLT model

« 2D square lattice AKLT model (5 = 2) with “nematic field”

- Z Q:(A)Q; (A)PIT1Q:(A)Q; (A)

Qi(A) = e~8ASL

has exact PEPS ground state (Q(A) )N W akLr)
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Criticality and the boundary model

- ladders: divergent correlations caused by
effective temperature going to zero

« 2D systems: diverging correlations at phase transition
arise from diverging interaction length at finite effective temperature

» confirmed with Ising PEPS:
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Boundary theory for topological models

« What about the boundary theory of topological models?

« Kitaev's toric code: left and right boundaries are connected
orp = 18N> @ 1®8Nv 4 X®Ne @ X BN

= boundary model Hy,,q = X®N> is completely non-local,
eff. temperature depends on other boundary

* adding local magnetic field breaks connection between boundaries

» different from Ising model:
orr = [0)(0|®N" @ |0)(0|N: + (1) (1|EN @ [1) (1@

= single boundary is again a local Ising model




Physical realization of virtual degrees of freedom:
Cavity QED

AV VAV N2

« D-level atom in the cavity
« Coupled to the cavity modes by a Hamiltonian H
« Photons leak out of the cavity

« Global quantum State of all photons leaking out of cavity is precisely described by a
cMPS

« Time-time-time-... correlation functions of photons are equivalent to all correlations
functions of cMPS: static properties of quantum spin systems have a counterpart as
time-time correlation functions of non-equilibrium systems in a dimension lower

« Provides connection between quantum measurement theory and quantum field
theory

Schon, Cirac, FV, Wolf PRL '06;
Osborne, Eisert, FV PRL ‘10



How to optimize the tensors:
The time-dependent variational principle (Dirac)

» If the true quantum states that we want to describe are well represented by
states in the variational manifold, we would also like to describe the
dynamics in this manifold (as a consequence of the Schrodinger equation

— Time-dependent variational principle (e.g. time-dependent HF):

18, %(z)

= i—=—y;j=f(2)

)
y= argmin,, H}[lp(z) 2. Y :’;Z(Z)

» Alinear differential equation (Schrodinger equation) in an exponentially
large Hilbert space is mapped to a nonlinear differential equation in a small
dimensional manifold



example: the Gross-Pitaevskii / nonlinear Schrodinger
equation

« Consider a system of bosons interacting with a point-potential (Lieb-Liniger):

« We now consider the manifold of coherent states:

) = el P eV.T|) [, . ¥,]=60x - y)

— Applying the time-dependent variational principle, a straightforward
calculation yields the Gross-Pitaevskii equation:

2m

—10;0(X,t) = (— V2 Vext (X)) O(x.t) + glo(x, 1) o(x. 1)

— Ground states can be approximated by evolving in imaginary time



Manifold of MPS: fibre bundles

gauge orbits
=1ibers

4

Anips

« MPS description is not unique: there are gauge degrees of freedom

— Those gauge transformation play crucial role in classifying all
phases of matter in 1D (Gu, Wen ‘09; Pollman et al ‘09; Schuch,
Cirac ‘11; ...)



Time dependent variational principle for MPS

Gauge degrees of freedom can be chosen such that the Gram
matrix of the tangent space is flat (metric is identity).

(0;90;0) A" = —i(9;0|H|v

N—— ——

ram matrix

TDVP approach allows for time evolution with MPS; opposed to
other time-dependent DMRG methods, this is

* Globally optimal

» Respects all symmetries

 Yields tangent plane for excitations

» Allows to find ground states very efficiently



Tangent planes and excitations

« Stationary points of TDVP correspond to variational minima; the
natural thing is now to linearize the physics around those points:

— The tangent vectors form a linear subspace, so we can project
the Hamiltonian on is vector space, and we get an effective
guadratic Hamiltonian (linear terms vanish)



Excitations in the tangent plane
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Excitations

 Why does this Feynman-Bijl type ansatz for excitations work so well?

* Using methods similar to the ones to prove area laws for gapped 1D systems, it
IS possible to prove that all isolated elementary excitations can be obtained by
acting locally with an operator on the ground state:

+tek® @ @ @ © © @ © © © © © © © © © © © © © & © O

+te”@® @ ©@ @ © © © © © © © © © ¢ ¢ ¢ ¢ 0 ¢ & & O O

« The length on which those blocks have to act is proportional to the gap between
the 1-particle band and the continuum band above it

— This is a non-relativistic analogue of result of Fredenhagen et al. that elementary
particles in QFT are local; instead of light cone, we use Lieb-Robinson bounds

« This is somehow amazing: knowing ground state allows to find all low-lying

I I
excited states! J. Haegeman, S. Michelakis, B. Nachtergaele, T. Osborne, N. Schuch, FV ‘12



Entanglement entropy of quasi-particle states

« Because of this local construction, the entanglement entropy of the
guasi-particle states is exactly given by the entanglement entropy of
the ground state + 1 (in log2 units)

+tek® © @ @ © @ © © © © © © © © © © © © © © ©® © O

+te”@ @ ©@ @ © @ @ © © © © © © ¢ ¢ ¢ ¢ ¢ 0 & & O O



Spin 1 AKLT model

Excitation energies in the AKLT model
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In the case of symmetry breaking, elementary excitations are
typically domain walls between the two phases: topological nontrivial
excitations (cfr. Mandelstam ansatz)
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Spin 1 XXZ
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Figure 3.20: Spectrum of the lowest lying excitations of the § = 1 XXZ antiferromagnet with anisotropy parameter

A =3 at D =32. Red circles indicate topologically non-trivial excitations whereas green squares indicate topologically
trivial excitations.
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Variational principle for quantum field theories?

* Is it possible to systematically parameterize the low-energy sector of
all guantum field theories, just like we did for lattice systems, but
without putting it on the lattice?

— Would open the door to novel non-perturbative approaches for relativistic
theories

— Would allow for a systematic description of the experiments with cold gases
(without having to define Hubbard-type band etc.)

— Why not putting it on a lattice? MPS has finite correlation length!

 One of Feynman'’s last papers: “Difficulties in Applying the
Variational Principle to Quantum Field Theories™

— “... I didn’t get anywhere. So | want to take, for the sake of arguments, a very
strong view — which is stronger than | really believe — and argue that it is no
damn good at all! ”



Feynman Objection I
Sensitivity to High Frequencies

Energy contributions to the total energy of the high frequency modes
are much more important than the low-energy ones

Therefore any variational method will try to get the high-frequencies
right, even at the cost of getting low-energy behaviour wrong

— “... what happens when | allow it to adjust its parameter (to lower the total
energy), is it improves the imperfect function | was using at the high
frequencies...”

This is obviously not what we want!

— We are interested in long-range low-energy physics, this is the point of a
guantum field theory



Feynman Objection II:
Only exponential trial states

For atoms, very good variational wavefunctions are of the form
w (%)=~ (1- Bx* Jexp(- ax?)

This is not possible in the case of QFT, as the dimensions do not fit
In formulae like

1- B[ #(x)* dx Jexpl— [ [ JOOK (X, y)eo(y)dxdly

the wavefunction has to be “size extensive”

4
What we want instead is corrections of the form exp(— ﬂ_[ P(X) dx) but
then we have to evaluate non-Gaussian functional integrals which is
extremely hard to do with good enough precision



Feynman’s visionary suggestion as a way out:

“Now, in field theory, what’s going on over here and what’s going on over there and all over
space 1s more or less the same. Why do we have to keep track in our functional of all things
going on over there while we are looking at the things that are going on over here? ... It’s really
quite insane, actually: we are trying to find the energy by taking the expectation value of an
operator which is located here and we present ourselves with a functional which is dependent on
everything all over the map. That’s something wrong. Maybe there is some way to surround the
object, or the region where we want to calculate things, by a surface and describe what things are

coming in across the surface. It tells us everything that’s going on outside.”

“I think it should be possible some day to describe field theory in some other way than

with the wave functions and amplitudes. It might be something like the density matrices where

you concentrate on quantities in a given locality and in order to start to talk about it you don’t

»

immediately have to talk about what’s going on everywhere else ...

This is actually exactly what S. White did with the “density matrix
renormalization group” DMRG, which is now understood as a variational
method within the class of MPS



MPS In the continuum limit;

V) = Traus [p f_..__:,,_f]:;’-' dz|Q(z)@ L+ R(z)@y T (x j;]] )

Q(x), R(x) are DxD matrices acting on an auxiliary Hilbert space. The
wavefunction is automatically normalized and the total number of
parameters is exactly D? if we use the gauge condition

FV, Cirac, PRL 2010



cMPS in second quantization

O = Trous [ug(z1,0)Rug(ze. 21)R ... Rug(L. xy,)]

K !

Where is the density matrix?
— Lindblad evolution instead of CP-map:
d
dz’

1

9

(z) = —i[H, p(z)]+ Rp(z)RT —

[RT R.p( _;_}} N

— The density martrix lives on the virtual space, and its eigenvalues are
the Schmidt coefficients of the halve-chain: entanglement spectrum!



Example: the Lieb-Liniger model
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* Working towards simulating non-translational invariant systems such
as interacting bosons / fermions in an external potential (e.g. optical
lattices)



Schmidt coefficients / entanglement spectrum for
the Lieb-Liniger model:
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Overcoming objection 1 of Feynman:
high frequencies in cMPS

« Expectation value of the non-relativistic kinetic energy:

— This is automatically bounded if all matrices involved are
bounded in norm

— If a cMPS wavefunction is such that its second order derivative is
continuous, then the expectation value of its high-frequency
components scales like 1

=55

» This imposes an effective high-energy cut-off as all expectation
values become finite; hence we can go and look at relativistic
theories!
Haegeman, Cirac, Osborne, Verschelde, FV PRL ‘10



Example: free Dirac fermions with cMPS

the Fourier transform of the 1-particle density matrix ReqROREILTICDIN IR N IC T D




Gross Neveu model using cMPS

Expectation value of o = (y|vTo%4 |y) in the Gross-
.+ v M0del as function of A(A) for N = oc.

% Exact result [Aa|/A a2 2¢~7/* follows from Fa. (3)
b A fit of the form c1e—2/* to th AT < 1at
D = 16 results in cp = 3.14270037 and ¢; = 2.057750%5.

Haegeman, Cirac, Osborne, Verschelde, FV PRL ‘10



The time-dependent variational principle for cmps

« The question: how to optimize those matrices / tensors?
« cMPS form a low-dimensional manifold in the huge Hilbert space
— It has a very interesting geometrical structure

— To find ground states, we can evolve in imaginary time: guaranteed to
converge to the ground state

— Time-dependent variational principle:

_ : 0y
y= argminy |09 - Z, 2
« The linear differential equation (Schrodinger equation) in an exponentially
large Hilbert space is mapped to a nonlinear differential equation in a small
dimensional manifold!




Case of D=1: Gross Pitaevskil / nonlinear
Schrodinger equation

) = Traus [,n Jo dz|Q(z)@ 1+ R(z)@y j:]] Q)

H m— — I f -Srj-i 1-.;_ . ‘.-_
-z':l. ( 2m rh*’*’ Vi }) Z m (i —T5),

= ihS= (A +V(x) + gIRI>)R



Quantum Gross-Pitaevskil equations

« cMPS formalism yields the natural generalization of the GP:

R(2)' By (o) R(x) + (F(2) o () R () + (B2 (@) § pu(2) B2 (2

R(2)Ep(2)R(2)" + (R(@)p(a) R(2) + cR2(2)p1, (@) (R ())1)

() R(x)pr(z)) = Ep(x)R(x)pr(x) + pr(c)R(x)ERr(x) +
( o (@ )B (x)pr(x) + cpr (@ )H () pr(a JB’(()]L + cR(x)pp (2 )R ( €T )[JR( T ))

— Matrix ("quantum?) version of Gross-Pitaevskii equation!

— use of gauge degrees of freedom allows to make those
equations strictly local and hence easy to integrate using
standard techniques



Elementary excitations

« Ground state physics is only the start: this is the vacuum!

— Real fun starts when we can look at elementary excitations
(quasi-particles).

* Note that is well understood how to get excitations on top of Gross-
Pitaevskii: construct an effective quadratic theory (Bogoliubov-
deGennes)

400 . . , N ~y A ~ . -
dxe'? xl{ Uj(—o0,x) ( VRL+We (rf‘l(’l)) Uy(x, +o0)ug €,

A

" o “ -~ -~ .
dxQ; ® 1 +R,® gf;'(x)} . Uy(y,z)=Pexp { [ dxQ,®1+R,® gﬁ(x)}
y vy

— As this wavefunction is linear in V,W, we obtain an effective quadratic
theory in the matrices V,W , and this yields D? eigenstates
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gure 4.5: Spectra obtained with our ansatz |®(V, W)) with bond dimension D =33, for y & 0.12 (a), y ~ 1.98 (b) and
~ 337.47 (c). Also shown are the ‘elementary excitations’ of type I (blue line) and type II (red line) according to [16].




Outlook

Boundary theories for generic quantum spin systems

Classification of topological phases of matter by symmetries of
tensors (Wen et al.)

Simulating Hubbard type models

Continuous PEPS: quantum field theory with wavefunctions
Scattering of quasi-particles : seeing this in real time
Generic constructions of effective theories

Lieb-Robinson bounds for continuum theories



Real-time evolution: scattering experiments
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Milsted et al., 2012



Conclusions

The variational principle makes sense for many-body quantum systems:
physical (low-energy) states live in a tiny corner of Hilbert space

In case of gapped 1 dimensional quantum systems, this corner seems to
have been identified

— Classification of phases, symmetry protected order, ...

Holographic principle: relevant degrees of freedom live in a theory of one
dimension lower

It is possible to develop quantum field theory with wavefunctions in real-
space

— Continuous Matrix Product States seem to capture the low-energy
physics of 1+1 dimensional quantum field theories (both relativistic and
non-relativistic)

Intriguing connections between quantum field theory, quantum
measurement theory, dissipative non-equilibrium phenomena and the
holographic principle



