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Outline 

• The variational method in quantum many-body systems 

 

• Guiding principle: area law for entanglement entropy 

 

• Variational classes for gapped phases: 

– Matrix product states for 1+1 D quantum spin systems 

– Projected entangled pair states for 2+1 D systems 

– Continuous MPS for quantum field theories 

 

 

 



Why do we need a variational principle? 

1. Central goal in quantum mechanics (particle physics, condensed 

matter, quantum chemsitry, …) is to describe the low-energy (long-

range) physics of (effective) Hamiltonians 

 

– Quantum features most prevalent at low temperature 

– For most fermionic systems, room temperature is already very 

cold (Fermi T = 10.000 K) 

 

2. The size of the Hilbert space associated to a many-body quantum 

system scales exponentially in the number of particles/spins/… 

 

– We have to resort to approximate methods to describe generic 

quantum many-body systems 

– Physical states are very far from being random: they have nontrivial 

local properties! 

– Hilbert space is a convenient illusion  (Qarry, FV PRL ‘11) 



Why do we need a variational principle?  

3. Several of the biggest breakthroughs in quantum many-body 

physics involved the variational principle: 

 

– Helium atom (Hylleraas, …) 

– Hartree-Fock for quantum chemistry  

• Also starting point for conventional QFT 

– BCS theory for superconductivity 

– Laughlin wavefunctions for fractional quantum Hall effect 

– DMRG of S. White for quantum spin systems 

 

 

4. The variational principle allows to capture non-perturbative effects 

very effectively  

 

 



The variational method 

• Basic principle: given a Hamiltonian H, we would like to identify the 

ground state (and more general all low energy states). Instead of 

working in the full Hilbert space, we want to find the states with 

minimal energy that live in some manifold parameterized by the 

parameters x.  

– Note: the whole trick is to identify the right manifold! 

 

• Ritz variational principle:                                                                                  

    

𝐸0(𝐻) ≤ min
𝑥

𝜓(𝑥) 𝐻 𝜓(𝑥)

𝜓(𝑥) 𝜓(𝑥)
 

 

 

• If the system has a gap and the variational wavefunction has an 

energy smaller than the first excited state, then the variational 

wavefunction has a sizeable overlap with the true ground state 



• Obviously, the whole trick is to identify the right class of 

wavefunctions for the problem at hand 

– What are the guiding principles? 

 

 

• In many very relevant cases, slight variations/perturbations on 

Gaussian states work extremely well: 

 

– For quantum chemistry, state of the art is the coupled cluster method 

(refinement of Hartree-Fock theory) 

– BEC: Gaussian, Gross-Pitaevakii, … 

– For quantum field theory in the small coupling regime: perturbation 

theory (Feynman diagrams) on top of Gaussians 

 

• However, many exotic materials do not fall within this class: 

quantum Hall systems, strongly correlated electrons on a lattice 

(Hubbard model), …  

– Those systems exhibit nontrivial entanglement 

 

 

 

 



Entanglement 

• From point of view of quantum information theory, it is a resource 

– Quantification: how useful is a quantum state/system to do information theoretic 
tasks 

• E.g. atomic clocks, quantum communication, quantum computing 

 

• From the point of view of numerical simulation strongly correlated quantum 
systems, quantum chemistry: enemy nr. 1 ! 

 

• From the point of view of condensed matter and high energy physics: leads to great 
things like quantum phase transitions, topological quantum order, … 

 

 

 

 

 

• Key question: what kind of superpositions appear in nature ? 



Quantum spin systems 

• Playground for strongly interacting many-body systems 

 

• Have been of intense interest since Heisenberg and Bethe since the 

‘30s because of the fact that they provide effective models for 

describing magnetism, quantum phase transitions, … 

– More recently: huge surge of interest  

     due to optical lattice experiments 

 

• Simplest model: the Hubbard model 



Area law for entanglement entropy  
 

 

• All low-energy states of local Hamiltonians on the lattice exhibit very 

few entanglement (area law) 

 

 

 

 

 

 

• This is a guiding principle: we will create a new class of variational 

wavefunctions (tensor networks) that parameterizes all states with 

that property 

 



Schmidt coefficients for Ising model in transverse 

magnetic field: 

 

 

 



Area laws for thermal states of local Hamiltonians 
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Quantifying the amount of correlations between A and B: mutual information 

All thermal states exhibit an exact area law (as contrasted to volume law) 

Cirac, Hastings, Wolf, FV. PRL‘08 

 

 

 

 

• All correlations are localized around the boundary 



Area laws 

• Ground states have extremal local correlations compatible with e.g. translation symmetry; this 

gives rise to correlation lengths, and entanglement is shared between particles within this 

correlation length. Therefore, the entanglement of a block with the outside scales as the surface 

area and not as the volume of the block 

• Main picture: entanglement / information is concentrated around the boundary 
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Topological entropy: detects topological quantum order 

locally! 



New guiding principle for interacting systems on 

the lattice: area law for entanglement entropy  

 

• The corner in Hilbert space containing such low-energy states can 

be fully parameterized by tensor network states : the entanglement 

is distributed in a local way such as to capture the area law in a way 

that does not lead to an exponential number of parameters  

 

• Matrix product states (MPS) in 1D  

• projected entangled pair states (PEPS) in higher dimensions 

• multiscale entanglement renormalization ansatz  for critical systems 

(Vidal) 

 

 

 
In fact, for gapped 1-dimensional quantum spin systems, we can understand all 

physics by looking at matrix product states; this allows e.g. for a classification of all 

possible phases of 1-D systems using MPS formalism  

Same in principle for higher dimensional classifications using PEPS 



Tensor network states 

 

– 1D case: Matrix product states, which are generalizations of the valence bond 

AKLT-states of Affleck-Kennedy-Lieb-Tasaki (‘88) 

 

 

 

 

 

 

 

– Systematic way of constructing translational invariant states 

– “Virtual” dimension D encodes the “renormalized” degrees of freedom of the 

environment 

 

 

• Inherently used by Wilson (NRG) and S. White (DMRG): NRG and DMRG are 

variational methods within the class of MPS  
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Matrix product states and area laws 

• All MPS exhibit very few block entanglement : 

 

 

 

 

 

• Converse is also true: if the block entropy is measured by Renyi entropies 

with                     , then small entanglement implies approximable by MPS 
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Tensor networks in 2D: PEPS  

 

 

 

 

 

 

 

 

• Conjecture: any ground state of a local gapped Hamiltonian can be written 

efficiently within this form (# parameters is D4) 

• In this case, the correlation length can diverge 

• Examples of exotic PEPS: AKLT, RVB, Kitaev’s toric code, Levin-Wen 

models, … 

– The order parameters and/or topological features are reflected in the 

local symmetry properties of the tensors!  

Tensor P maps D4  

dimensional  to d 

dimenional space 

FV, Cirac ‘04 



  

 



 



 



 



 



 



 



Physical realization of virtual degrees of freedom: 

Cavity QED 

 

 

 

 

• D-level atom in the cavity 

• Coupled to the cavity modes by a Hamiltonian H 

• Photons leak out of the cavity 

• Global quantum State of all photons leaking out of cavity is precisely described by a 

cMPS 

• Time-time-time-… correlation functions of photons are equivalent to all correlations 

functions of cMPS: static properties of quantum spin systems have a counterpart as 

time-time correlation functions of non-equilibrium systems in a dimension lower 

• Provides connection between quantum measurement theory and quantum field 

theory 

 

Schon, Cirac, FV, Wolf PRL ’06; 

Osborne, Eisert, FV PRL ‘10 



How to optimize the tensors: 

The time-dependent variational principle (Dirac)  

 

• If the true quantum states that we want to describe are well represented by 

states in the variational manifold, we would also like to describe the 

dynamics in this manifold  (as a consequence of the Schrodinger equation 

– Time-dependent variational principle (e.g. time-dependent HF): 

 

 

 

 

 

 

 

 

                 y= 𝑎𝑟𝑔𝑚𝑖𝑛𝑦 ℋ𝜓(𝑧) −  𝑦𝑗
𝜕𝜓(𝑧)

𝜕𝑧𝑗
𝑗             ⇒           𝑖

𝜕𝑧𝑗

𝜕𝑡
= −𝑦𝑗= 𝑓 𝑧  

 

• A linear differential equation (Schrodinger equation) in an exponentially 

large Hilbert space is mapped to a nonlinear differential equation in a small 

dimensional manifold  



example: the Gross-Pitaevskii / nonlinear Schrodinger 

equation 

• Consider a system of bosons interacting with a point-potential (Lieb-Liniger): 

 

 

 

 

• We now consider the manifold of coherent states: 

 

 

 

– Applying the time-dependent variational principle, a straightforward 

calculation yields the Gross-Pitaevskii equation: 

 

 

 

 

– Ground states can be approximated by evolving in imaginary time  

|𝜑 = 𝑒 𝑑𝑥 𝜑(𝑥)𝜓
𝑥
†
|Ω                      𝜓𝑥 ,   𝜓𝑦

† =𝛿(𝑥 − 𝑦) 



Manifold of MPS: fibre bundles 

 

 

 

 

 

 

 

 

• MPS description is not unique: there are gauge degrees of freedom 

 

 

– Those gauge transformation play crucial role in classifying all 

phases of matter in 1D (Gu, Wen ‘09; Pollman et al ‘09; Schuch, 

Cirac ‘11; …) 



 

Time dependent variational principle for MPS 

 

 

 

 

• Gauge degrees of freedom can be chosen such that the Gram 

matrix of the tangent space is flat (metric is identity). 

 

 

 

• TDVP approach allows for time evolution with MPS; opposed to 

other time-dependent DMRG methods, this is  

• Globally optimal 

• Respects all symmetries 

• Yields tangent plane for excitations 

• Allows to find ground states very efficiently  



Tangent planes and excitations 

 

• Stationary points of TDVP correspond to variational minima; the 

natural thing is now to linearize the physics around those points:  

– The tangent vectors form a linear subspace, so we can project 

the Hamiltonian on is vector space, and we get an effective  

quadratic Hamiltonian (linear terms vanish) 

 

 

 

 

 

 

 

 

 



Excitations in the tangent plane 

 

 

 

 

 

 

 

 

 

 

Spin 1 Heisenberg model 



Excitations 
• Why does this Feynman-Bijl type ansatz for excitations work so well? 

 

• Using methods similar to the ones to prove area laws for gapped 1D systems, it 

is possible to prove that all isolated elementary excitations can be obtained by 

acting locally with an operator on the ground state: 

 

 

 

 

 

 

 

 

• The length on which those blocks have to act is proportional to the gap between 

the 1-particle band and the continuum band above it 

– This is a non-relativistic analogue of result of Fredenhagen et al. that elementary 

particles in QFT are local; instead of light cone, we use Lieb-Robinson bounds 

 

• This is somehow amazing: knowing ground state allows to find all low-lying 

excited states! 

 

 

 

 

 

 

+ eik 

+ ei2k 

J. Haegeman, S. Michelakis, B. Nachtergaele, T. Osborne, N. Schuch, FV ‘12 



Entanglement entropy of quasi-particle states 

 

• Because of this local construction, the entanglement entropy of the 

quasi-particle states is exactly given by the entanglement entropy of 

the ground state + 1 (in log2 units) 

 

 

 

 

+ eik 

+ ei2k 



Spin 1 AKLT model 

 



 

• In the case of symmetry breaking, elementary excitations are 

typically domain walls between the two phases: topological nontrivial 

excitations (cfr. Mandelstam ansatz) 



Spin 1 XXZ 

 

Geben Sie hier eine Formel ein. 



Variational principle for quantum field theories? 

 

• Is it possible to systematically parameterize the low-energy sector of 

all quantum field theories, just like we did for lattice systems, but 

without putting it on the lattice? 

 

– Would open the door to novel non-perturbative approaches for relativistic 

theories 

 

– Would allow for a systematic description of the experiments with cold gases  

(without having to define Hubbard-type band etc.) 

 

– Why not putting it on a lattice? MPS has finite correlation length! 

 

• One of Feynman’s last papers: “Difficulties in Applying the 

Variational Principle to Quantum Field Theories” 

 

– “… I didn’t get anywhere. So I want to take, for the sake of arguments, a very 

strong view – which is stronger than I really believe – and argue that it is no 

damn good at all! ” 

 

 

 



Feynman Objection I:  

Sensitivity to High Frequencies 

• Energy contributions to the total energy of the high frequency modes 

are much more important than the low-energy ones 

 

 

• Therefore any variational method will try to get the high-frequencies 

right, even at the cost of getting low-energy behaviour wrong 

 

– “… what happens when I allow it to adjust its parameter (to lower the total 

energy), is it improves the imperfect function I was using at the high 

frequencies…” 

 

• This is obviously not what we want! 

– We are interested in long-range low-energy physics, this is the point of a 

quantum field theory 

   



Feynman Objection II:  

Only exponential trial states 

 

• For atoms, very good variational wavefunctions are of the form 

 

 

 

• This is not possible in the case of QFT, as the dimensions do not fit 

in formulae like  

 

 

the wavefunction has to be “size extensive”  

 

• What we want instead is corrections of the form                                 but 

then we have to evaluate non-Gaussian functional integrals which is 

extremely hard to do with good enough precision 
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Feynman’s visionary suggestion as a way out: 

     

This is actually exactly what S. White did with the “density matrix 

renormalization group” DMRG, which is now understood as a variational 

method within the class of MPS 



MPS in the continuum limit: 

 

FV, Cirac, PRL 2010 

 

Q(x), R(x) are DxD matrices acting on an auxiliary Hilbert space. The 

wavefunction is automatically normalized and the total number of 

parameters is exactly D2   if we use the gauge condition 



cMPS in second quantization 

 

 

 

 

 

 

 

• Where is the density matrix? 

– Lindblad evolution instead of CP-map: 

 

 

 

– The density martrix lives on the virtual space, and its eigenvalues are 

the Schmidt coefficients of the halve-chain: entanglement spectrum!  



Example: the Lieb-Liniger model 

 

 

 

 

 

 

 

 

 

 

 

• Working towards simulating non-translational invariant systems such 

as interacting bosons / fermions in an external potential (e.g. optical 

lattices) 



Schmidt coefficients / entanglement spectrum for 

the Lieb-Liniger model: 

 



Overcoming objection 1 of Feynman:  

high frequencies in cMPS 

• Expectation value of the non-relativistic kinetic energy: 

 

 

 

 

– This is automatically bounded if all matrices involved are 

bounded in norm 

 

– If a cMPS wavefunction is such that its second order derivative is 

continuous, then the expectation value of its high-frequency 

components scales like 

 

 

• This imposes an effective high-energy cut-off as all expectation 

values become finite; hence we can go and look at relativistic 

theories!  
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Haegeman, Cirac, Osborne, Verschelde, FV PRL ‘10 



Example: free Dirac fermions with cMPS 

 

Simulation of free Dirac fermions by introducing an effective cut-off; plotted is n(k) obtained as 

the Fourier transform of the 1-particle density matrix 



Gross Neveu model using cMPS 

 

Haegeman, Cirac, Osborne, Verschelde, FV PRL ‘10 



The time-dependent variational principle for cmps 

• The question: how to optimize those matrices / tensors? 

• cMPS form a low-dimensional manifold in the huge Hilbert space 

– It has a very interesting geometrical structure  

– To find ground states, we can evolve in imaginary time: guaranteed to 

converge to the ground state 

– Time-dependent variational principle: 

 

 

 

 

 

 

 

 

                 y= 𝑎𝑟𝑔𝑚𝑖𝑛𝑦 ℋ𝜓 −  𝑦𝑖
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• The linear differential equation (Schrodinger equation) in an exponentially 

large Hilbert space is mapped to a nonlinear differential equation in a small 

dimensional manifold! 



Case of D=1: Gross Pitaevskii / nonlinear 

Schrodinger equation 
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= −∆ + 𝑉 𝑥 + 𝑔 𝑅 2 𝑅 



Quantum Gross-Pitaevskii equations 

 

• cMPS formalism yields the natural generalization of the GP: 

 

 

 

 

 

 

 

 

– Matrix (“quantum”) version of Gross-Pitaevskii equation! 

 

– use of gauge degrees of freedom allows to make those 

equations strictly local and hence easy to integrate using 

standard techniques  



Elementary excitations  

• Ground state physics is only the start: this is the vacuum! 

– Real fun starts when we can look at elementary excitations 

(quasi-particles). 

 

• Note that is well understood how to get excitations on top of Gross-

Pitaevskii: construct an effective quadratic theory (Bogoliubov-

deGennes) 

 

 

 

 

 

 

 

– As this wavefunction is linear in V,W, we obtain an effective quadratic 

theory in the matrices V,W , and this yields D2 eigenstates 



 



Outlook 

• Boundary theories for generic quantum spin systems 

• Classification of topological phases of matter by symmetries of 

tensors (Wen et al.) 

• Simulating Hubbard type models  

• Continuous PEPS: quantum field theory with wavefunctions 

• Scattering of quasi-particles : seeing this in real time 

• Generic constructions of effective theories  

• Lieb-Robinson bounds for continuum theories 

• … 

 

 



Real-time evolution: scattering experiments 

 

Milsted et al., 2012 



Conclusions 

• The variational principle makes sense for many-body quantum systems: 

physical (low-energy) states live in a tiny corner of Hilbert space  

 

• In case of gapped 1 dimensional quantum systems, this corner seems to 

have been identified 

– Classification of phases, symmetry protected order, … 

 

• Holographic principle: relevant degrees of freedom live in a theory of one 

dimension lower 

 

• It is possible to develop quantum field theory with wavefunctions in real-

space  

– Continuous Matrix Product States seem to capture the low-energy 

physics of 1+1 dimensional quantum field theories (both relativistic and 

non-relativistic) 

 

• Intriguing connections between quantum field theory, quantum 

measurement theory, dissipative non-equilibrium phenomena and the 

holographic principle 

 

 

 


