


Renyi Entropy:
* generalization of entanglement entropy: Sz = =1 [pa logpa]

1

1l — «

So = log T'r | p3 |

* recover entanglement entropy as a limit: Spe = lim1 Sa
o—

* latter is now part of “standard” approach to calculating Szx
(powers easier than logarithm)

* other interesting limits:

Soc = lim S, = —log A1 where A1 is largest eigenvalue

o—> OO

So = lim S, = log| D]

a—0

where D = number of nonvanishing eigenvalues



Renyi Entropy:

* generalization of entanglement entropy: Sz = =1 [pa logpa]

1
So = ——log T'r [p% |
(Calabrese & Cardy)
« simple universal result for interval of length ¢ in d=2 CFT:
C 1 c
S, = : (1 + 5) log (£/96) [SEE = S = 3 log(£/9)

(Calabrese, Cardy & Tonni)
- two intervals (in d=2 CFT): Sy, considerably more complicated

— involves entire spectrum; continuation to n=1 unknown
e for d > 2: growing number of examples (analytic and numerical)
(Metlitski, Fuertes & Sachdev; Hastings, Gonzalez, Kallin & Melko; . . .)

—> calculations are demanding;
“standard” approach relies on replica trick



Calculating Renyi Entropy with “Replica Trick”:

0. analytically continue: tg =14t by = 00

1. path integral representation
of ground state wave function

\IJEL)(Q% ¢B)

\IIO(¢A7 ¢B)



Calculating Renyi Entropy with “Replica Trick”:

0. analytically continue: tg = ¢t

1. path integral representation
of ground state wave function

2. trace over @ g to construct
density matrix pa (¢, d7)

B\
A B

pA(¢:|éia ¢;1)
ey, (6, 6p) (67, 0p)



Calculating Renyi Entropy with “Replica Trick”:

0. analytically continue: tg = ¢t

1. path integral representation
of ground state wave function

2. trace over @ g to construct
density matrix p (¢, d75) ~

B\QB

IOA(¢X7 ¢;1)
= Tr¢B\I/T(q5jl, o)V (P4, 0B)



Calculating Renyi Entropy with “Replica Trick”:

0. analytically continue: tg = ¢t

1. path integral representation
of ground state wave function

2. trace over @ g to construct

density matrix pA(gbjl, ®4) \g
B —
3. evaluate Tr(p’}) A B

Tr(pg) — Tr¢f4 [pA(qﬁzléb Z_l) T IOA(¢?47 ¢124) pA(qbi, ¢}4)]



Calculating Renyi Entropy with “Replica Trick”:

0. analytically continue: tg = ¢t

1. path integral representation
of ground state wave function

2. trace over @ g to construct
density matrix p (¢, d75) 5

3. evaluate Tr(p’})

—

evaluate euclidean partition function
on n-fold cover of original space

or
evaluate euclidean partition function for
n copies of field theory with twist operator
inserted at boundary of region A

twist
operator



Calculating Renyi Entropy with Holography:

« “standard” approach to calculate Sn relies on replica trick

* replica trick involves path integral of QF T on singular n-fold
cover of background spacetime

* holographic slogan: “its all geometry!”

——> how do we deal with singularity in boundary???
(Fursaev)

* “live with it!” —— singularity extends into the bulk and it is
effectively “extremized” as part of bulk gravity path integral

 problem: you get the wrong answer (Headrick)

 “smooth it out!” —— use conformal symmetry to “unwrap”
singularity; find smooth boundary metric and corresponding
smooth bulk solution (particularly “simple” for d=2: all bdy
metrics locally conformally flat, all bulk sol’s locally AdS;)

* need another calculation with simpler holographic translation*
(*realizing “smooth it out!” strategy in disguise)



: : (Casini, Huerta & RM)
A Simple Calculation of Entanglement Entropy:

- take in d-dim. flat space and choose[E = Sd_Q]with radius R
——> entanglement entropy: Spz = —17 [pa log pa]

D

 density matrix pa describes physics in entire causal domain D

- conformal mapping: D — H = R, x H%™!



: : (Casini, Huerta & RM)
A Simple Calculation of Entanglement Entropy:

« take CFT in d-dim. flat space and choose 2 = S92 with radius R
——> entanglement entropy: Sizr = =717 [pa log pa]

H

« conformal mapping: D — H = R; X Ha1

curvature scale: 1/R temperature: T=1/2R !

o for CFT: Pthermal = UpA U_l —_—> SEE — Sthermal




: : (Casini, Huerta & RM)
A Simple Calculation of Entanglement Entropy:

« take CFT in d-dim. flat space and choose S92 with radius R
——> entanglement entropy: Spz = —17 [pa log pa]

—> by conformal mapping relate to thermal entropy
on H=Rx H"" with R ~1/R2 and T=1/21R

SEE — Sthermal

* note both sides of equality are divergent

—> Sthermal SUMS constant entropy density 2

over infinite volume /4

» must follow original UV cut-off through
conformal mapping to IR cut-off on H¢~1

Umaz =~ R/0

-----



: : (Casini, Huerta & RM)
A Simple Calculation of Entanglement Entropy:

- take any CFT in d-dim. flat space and choose S92 with radius R
——> entanglement entropy: Spz = —1'r [pa log pa]

—> Dby conformal mapping relate to thermal entropy
on H=Rx H! with R ~1/R2 and T=1/2nR

SEE — Sthermal

AdS/CFT correspondence:
 thermal bath in CFT = black hole in AdS

SEE — Stherma,l — Shorizon

* only need to find appropriate black hole

—> topological BH with hyperbolic horizon
which intersects 0 A on AdS boundary

(Aminneborg et al; Emparan; Mann; . . .)



SEE — Sthe’r'mal — Shom'zon

* desired “black hole” is a hyperbolic foliation of empty AdS space

L? 1
2 _ 2 d—1
ds® = 22 (dz /— dt* + dx )17' + p? d> == T = o

* bulk coordinate transformation implements
desired conformal transformation on boundary

 “Rindler coordinates” of AdS space:




SEE — Sthe’r'mal — Shom'zon

* desired “black hole” is a hyperbolic foliation of empty AdS space

L? dp? pP—L* 2 gyd—1 1
-1 e AT + p~ dX —> T=—

ds* =
> 2T R

« apply Wald’s formula (for any gravity theory) for horizon entropy:

N o .., .
S = —27T/dd 1$\/E aR/“/pa gr €po
27

= —T (d/2) agfV (H'™)

(RCM & Sinha)

where @, copeaitialathefgedfanibiiyige frane theayralify theory
xd/2  pd-1 for even d
= entaneg(;ferr?én’c__ep’t(gwﬁq@ﬁés dae&inatebhe A \éharge
for odd d




SEE — Sthe’r'mal — Shom'zon

* desired “black hole” is a hyperbolic foliation of empty AdS space

L? dp? p? — L? 1

2 _ 2 | 2 gyd—1 _
ds_(p2—L2)_ 72 dr* + p* dX5 — =

2T R

« apply Wald’s formula (for any gravity theory) for horizon entropy:

S‘d—/zr (4/2) adm"\

2 1yd—2
intersection with standard ds® = 1 + u2 +u dfdy

regulator surface: zpmin = 0 ﬁ

S = (d 427;;( = (E) _2 4 f

\ J
|

“area law” for d-dimensioft_ .




SEE — Sthe’r'mal — Shom'zon

* desired “black hole” is a hyperbolic foliation of empty AdS space

L? dp? pP-L* 2 gyd—1 1
— — - —_— T =
D 27 R

« apply Wald’s formula (for any gravity theory) for horizon entropy:

S = %F(dﬂ) ay V(H*™) ﬁ

du?
2 2 d—2
ds” = 2 + u” df)s
universal contributions:
d_ «
S = -+ (=)27'4a} log (2R/6) + -+ forevend

d—1

o+ (9)T 2mal 4 - forodd d



SEE — Sthe’r'mal — Shom'zon

universal contributions:

S = -+ (=)F'4a} log(2R/S) + - - foreven d

-+ (—)%%a; + .- for odd d
- discussion extends to case with background: R*¢~! — R x 8971

« for Einstein gravity, coincides with Ryu & Takayanagi result and
horizon (bifurcation surface) coincides with R&T surface

—> no extremization procedure here?!?

* applies for classical bulk theories beyond Einstein gravity

« can imagine calculating “quantum” corrections (eg, Hawking rad)



(Casini & Huerta)

Holographic Renyi entropy: (Hung, RM, Smolkin & Yale)
(Klebanov, Pufu, Sachdev & Safdi)

 apply previous approach to calculate Renyi entropy

1 n
Sn: 1_n10g TT[IOA]

* there discussion lead to “thermal” density matrix

o—H/Ty

1
=U~! U i =
pa Tr [e_H/TO] with T 2R

ne  IrlemH/To] «—— partition function at new
m— T7ph] = Tr [e=H/To]" temperature, T' = Tp/n

- hence find convenient formulae using (1) = =1 log Z(T')

n 1

Sp =
1—nT0

F'(To) — F(To/n)]




(Casini & Huerta)

Holographic Renyi entropy: (Hung, RM, Smolkin & Yale)
(Klebanov, Pufu, Sachdev & Safdi)

e then use S = —0F/0T to find:

n 1 [To
?’n =T /To/n S(TT)CZT with Tp = o
Renyi entropy thermal entropy
for spherical 2 on hyperbolic space Hd-’
. .

 turning to AdS/CFT correspondence,

we need topological black hole solutions at arbitrary temperature

2 _ ﬁ _ 2 1,2 dr? 2 152 , L2
ds? = (LQf(r) 1)N dt? + it dx2_, [N _fOORQ]
« work with gravity theories where we can calculate: Einstein,
Gauss-Bonnet, Lovelock, quasi-topological, .....




(Hung, RCM, Smolkin & Yale)

Holographic Renyi entropy:

» for example, with Einstein gravity:
—1

7 L _ B
S, = q—ql (ép) (2—2? (1+22))|V(H?)
1
where z, = q_d (1 + \/1 — 2dg? + d2q2)

—> need to regulate integral over horizon:

d—2 a_y 2m(d—2/2
V(H" ") =~ (—)>2 T(d/2) log(2R/9) for even d

—> translate gravity couplings to CFT parm’s:
7Td/2 I d—1
Cr =
I'(d/2) <€P)

= (5,),,., = ()FOr L (2272 (14 43)) log(2R/5)

q

(for even d)



(Hung, RCM, Smolkin & Yale)

Holographic Renyi entropy:

» for example, with Einstein gravity:

) (S)), = ()37 Or L (2= 272 (14 23)) log(2R/0)

(for even d)

« compare to d=2 result:

S, = g <1+ l) log (£/9)

|

—> matches universal result of Calabrese & Cardy /

» might suggest simple universal form for even d:

(Sq)unin = Cr X f(d,q) x log(2R/9)



Holographic Renyi entropy:
. consider Gauss-Bonnet gravity (with d=4):

A
d’z /=g [ + R+ L5 (R Rapea — 4Rap R™ + R)

2@3
4d Euler density
* higher curvature but eom are still second order!! (Lovelock)
» studied in detail for stringy gravity in 1980’s
(Zwiebach; Boulware & Deser; Wheeler; Myers & Simon; . . . . )
» interest recently in AAS/CFT studies — a toy model with ¢ # a
LB L3
cC=T ﬁ(l—Z)\foo), a=T ﬁ(1—6)\foo)

where ZNL:L/\/fTO and fo = (1-v1-4X)/(2))

(eg, Brigante, Liu, Myers, Shenker,Yaida, de Boer, Kulaxizi, Parnachev, Camanho,
Edelstein, Buchel, Sinha, Paulos, Escobedo, Smolkin, Cremonini, Hofman, . . . .



(Hung, RCM, Smolkin & Yale)

Holographic Renyi entropy:

« for example, with GB gravity and d=4:
n1l—z?

(Sn) ynin = log(2R/0) 51 (5¢ — a)z® — (13¢c — ba)
2cx® —c+a
(3c—a)x? —c+a

_ 2 1 c—
where 0—g3_ ¢~ (2 N 1lcza
bhe—a \ n n dc— a

+16c

 unfortunately indicates no simple universal form:
C

(Sn) ypinw =0 X f (d,n, 5,754, . ) x log(2R/9)

e further work (with quasi-topological gravity) shows the universal
coefficient depends on more CFTdata than central charges



(Hung, RCM, Smolkin & Yale)

Holographic Renyi entropy:

« for example, with GB gravity and d=4:
n1l—z?

(Sn) ynin = log(2R/0) 51 (5¢ — a)z® — (13¢c — ba)
2cx’ —c+a
(3c —a)x? —c+ a}
* note despite intimidating expression, results relatively simple:

+16c

1.0 n=1
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Twist Operators:

. TT(PT/L\) evaluated as Euclidean
path integral over n copies of field
theory inserting twist operators
at boundary of region A

» twist operators introduce n-fold
branch cuts where various copies B
of fields talk to each other

—

twist
operator



Twist Operators:

‘ Tr(PZi) evaluated as Euclidean path integral over n copies of
field theory inserting twist operators at boundary of region A

* twist operators introduce n-fold branch cuts where various
copies talk to each other

* elegant results for d=2, eg, scaling dimension of twist operators

1
12 n (Calabrese & Cardy)

* in d dimensions, would be (d—2)-dimensional surface operators
but little is known about their properties



Twist Operators:

» consider insertion of stress tensor near planar o,
twist operator for CFT in RY = structure of OPE \

fixed by symmetry

hn 5&
<Tab On> - 9 db y <Tai 0n> =0
U ry ’ e
n(d—1)0;; —dn;n; &
(Tijon) = o v T

ry

|

where a,b || 0, and ¢,j L oy,

« h,, commonly called scaling dimension (precisely matches d=2)



Twist Operators:
» consider previous calculation for spherical entangling surface:
 conformal mapping for spherical entangling surface

—> Euclidean version gives one-to-one map: S' x H%~ ! — R4

—> with A7p =n/Ty =27Rn (n € Z) get n-fold cover of R“

St x HY L. ds* = dr3 + R? (du2 + sinh?u dQ?i_Q)
. R—r— itE
ion: exp(—u—1iTg/R) =
coord. transformation: exp ( e/ R) R r ity
RY : 0 ds? =02 [dt} + dr® 417 dQ3, ]

L 02 _ 4R*

(R? — 12 + tzE)2 + 47“2t2E

Holographic aside: (*realizing “smooth it out!” strategy in disguise)



Twist Operators:
» consider previous calculation for spherical entangling surface:
 conformal mapping for spherical entangling surface

—> Euclidean version gives one-to-one map: S' x H%~ ! — R4

—> withAtg =n/Ty =27Rn (n € Z) get n-fold cover of R“

—> “generates” spherical twist operator 0, on S 2. r =R

Strategy to evaluate h,

« evaluate (Tas) in thermal bath; map back to (R,
evaluate (T3 0r) in limit that 7,z approaches twist operator ;
read h,, off from singularity in correlator



Twist Operators:

» evaluate (I 0n) correlator by mapping from thermal bath

(Tap o) = 0172 220 O (1, (Tofm) — A )T0)))

| ]
|
' ' \\
uniform

creates singularity _
near twist operator thermal bath anomalous bit

(compare: Marolf, Rangamani & Van Raamsdonk)

* read off h, from short distance singularity

"B () - etym)

h, = 27

[ no holography, yet!! ]



Twist Operators:

» evaluate (I 0n) correlator by mapping from thermal bath

(Topon) = 002 S0 0 (11, (T ) — (T (Th) )

| ]
\ Y

1

creates singularity uniform
near twist operator  thermal bath

(compare: Marolf, Rangamani & Van Raamsdonk)

anomalous bit

« for example, with GB gravity and d=4:
n

hnzﬂ(w2—1)[c—a—x2(5c—a)]
_ 2 _
where Ozx?’—gc CL(x +x>+lc a
he—a \ n nbdc—a

* no simple universal form can be expected
« again, CFT data beyond central charges also appears



Twist Operators:

» holographic results show remarkable simplicity with 7 — 1

_ % g

* recall general (non-holographic) formula:

n R4
hn = 27— (5(T0) _ g(TO/n))
21 R4
— 1 = —
anhn|n—1 (d _ 1)T0 <T’T’T H>

 clear that result comes for OPE of two stress tensors!

* verify precise form above holds as general result for any CFT
* generalize: ’f k—1

|
(—)F2m R4 : - ‘
Oy |1 = T (T, H - H> kTo(T» H---H) ) for k> 2

« verified precise form for k=2 as general result for any CFT




Conclusions:

* AdS/CFT correspondence (gauge/gravity duality) has proven
an robust tool to study strongly coupled gauge theories

 holographic entanglement/Renyi entropy is part of interesting
dialogue has opened between string theorists and physicists

in a variety of fields (eg, condensed matter, nuclear physics, . . .)

* potential to learn lessons about issues in boundary theory
eg, readily calculate Renyi entropies and study twist operators
for wide class of (holographic) theories in higher dimensions

* potential to learn lessons about issues in bulk gravity theory
eg, holographic entanglement entropy may give new
iInsight into quantum gravity or emergent spacetime

Lots to explore!



