Cosmic Variance from Mode Coupling

Sarah Shandera
Penn State University

Nelson, Shandera, 1212.4550 (PRL);
LoVerde, Nelson, Shandera, 1303.3549 (JCAP);
Bramante, Kumar, Nelson, Shandera, 1307.5083;
Work in progress (S. Watson; Sohyun Park)

Linde, Muhkanov; Salopek, Bond; Mollerach et al;
Boubekeur, Lyth; Byrnes et al;
papers related to anomaly...

today: Peloso, Khoury, LoVerde

Shandera, CAP, 23 Sept 2013
The Plan

• Cosmic Variance from a generalized local ansatz

• Big Picture implications for inflation theory
 (important if we want to push observers/data analysis)
Cosmic Variance and the local ansatz:

$$g_{NL} = 10^5$$

LoVerde, Nelson, Shandera, 1303.3549 (JCAP); Nelson, Shandera, 1212.4550 (PRL); Shandera, CAP, 23 Sept 2013
Cosmic Variance and the local ansatz:

\[g_{NL} = 10^5 \]

\[f(\psi_G) \rightarrow \phi_G + f_{NL}(B, \tilde{f}_{NL}, \tilde{g}_{NL}, \ldots) \phi_G^2 + g_{NL}(B, \tilde{f}_{NL}, \tilde{g}_{NL}, \ldots) \phi_G^3 + \ldots \]

LoVerde, Nelson, Shandera, 1303.3549 (JCAP);
Nelson, Shandera, 1212.4550 (PRL);

Shandera, CAP, 23 Sept 2013
Re-interpreting Planck results
Re-interpreting Planck results

No detection of local NG means cosmic variance may not be too large (whew!)
Re-interpreting Planck results

No detection of local NG means cosmic variance may not be too large (whew!)

Planck says NG is small? Or, universe is very big?
Beyond the local ansatz:

Consider a simple scale dependence:

$$\zeta(x) = \phi_G(x) + \sigma_G(x) + \frac{3}{5} f_{NL} \star [\sigma_G(x)^2 - \langle \sigma_G(x)^2 \rangle]$$

$$+ \frac{9}{25} g_{NL} \star \sigma_G(x)^3 + \ldots$$

$$f_{NL}(k) = f_{NL}(k_p) \left(\frac{k}{k_p} \right)^{n_f}$$

Bramante, Kumar, Nelson, Shandera, 1307.5083; Shandera, CAP, 23 Sept 2013
I. Consequences for the power spectrum
Subsampling the generalized local ansatz

\[P_{\zeta}^{\text{obs}}(k) = P_{\zeta}(k) \left[1 + \frac{12}{5} f_{NL}(k) \sigma_{Gl} + \frac{3}{5} f_{NL}^2(k) \left(\sigma_{Gl}^2 - \langle \sigma_{Gl}^2 \rangle \right) \right] \]

Shift to observed spectral index
More simply

Different short wavelength modes couple with different strengths to the (locally constant) background:

Locally observed spectral index is biased in subvolumes.
The spectral index

\(n_{\zeta} = 1, \quad n_f = 0.1 \)

\(n_{\zeta} = 0.96, \quad n_f = 0.1 \)

(solid lines show 0.5 sigma fluctuations)

Bramante, Kumar, Nelson, Shandera, 1307.5083;
Shandera, CAP, 23 Sept 2013
The spectral index, cont’d

\[f_{\text{NL}}(k_p) = 5, \langle \zeta_{GL}^2 \rangle = 10^{-4} \]

\[f_{\text{NL}}(k_p) = 5, \langle \zeta_{GL}^2 \rangle = 10^{-3} \]
Model Building Consequences

$n_s(k_P) \sim n_\zeta = 1$

Strongly NG for $N > 10^8$
for $N > 1000$

Nonpert. for $N > 1000$

Planck 99% inclusion band for $n_s \sim n_\zeta = 1$ and a \(-1\sigma\) background fluct.

$n_s(k_P) \sim n_\zeta = 0.96$

Strongly NG for $N > 1000$
for $N > 100$

Nonpert. for $N > 100$

Planck 99% exclusion region for $n_s \sim n_\zeta = 0.96$ and a \(-1\sigma\) background fluct.

Bramante, Kumar, Nelson, Shandera, 1307.5083;

Shandera, CAP, 23 Sept 2013
How to rule cosmic variance of spectral index out.....
How to rule cosmic variance of spectral index out

......of observational relevance:
How to rule cosmic variance of spectral index out

......of observational relevance:

Observationally rule out any significant blue tilt in f_{NL}^{local}
How to rule cosmic variance of spectral index out

......of observational relevance:

Observationally rule out any significant blue tilt in $f_{\text{NL}}^{\text{local}}$

★ Importance of smaller scale probes.
Generalizations

∗ Effect of a general bispectrum on the power spectrum:

\[\zeta_k = \sigma_{G,k} + \int_{L^{-1}} \frac{d^3 p_1}{(2\pi)^3} \frac{d^3 p_2}{(2\pi)^3} (2\pi)^3 \delta^3(p_1 + p_2 - k) F(p_1, p_2, k) \sigma_{G,p_1} \sigma_{G,p_2} + \ldots, \]
Generalizations

Effect of a general bispectrum on the power spectrum:

\[\zeta_k = \sigma_{G,k} + \int_{L^{-1}} \frac{d^3 p_1}{(2\pi)^3} \frac{d^3 p_2}{(2\pi)^3} (2\pi)^3 \delta^3(p_1 + p_2 - k) F(p_1, p_2, k) \sigma_{G,p_1} \sigma_{G,p_2} + \ldots, \]

- Equilateral bispectrum has no effect
- Bispectrum can weight IR modes differently

Shandera, CAP, 23 Sept 2013
Generalizations

★ Effect of a general bispectrum on the power spectrum:

\[
\zeta_k = \sigma_{G,k} + \int_{L^{-1}} \frac{d^3p_1}{(2\pi)^3} \frac{d^3p_2}{(2\pi)^3} (2\pi)^3 \delta^3(p_1 + p_2 - k) F(p_1, p_2, k) \sigma_{G,p_1} \sigma_{G,p_2} + \ldots,
\]

☑ Equilateral bispectrum has no effect
☑ Bispectrum can weight IR modes differently

★ If tensor modes have an independent clock:

same story \(\text{eg, non Bunch Davies}\)
II. Consequences for the bispectrum and beyond
Scale-dependence in the bispectrum

\[B_\Phi(k_1, k_2, k_3) = \xi_s(k_3) \xi_m(k_1) \xi_m(k_2) P_\Phi(k_1) P_\Phi(k_2) + 5 \text{ perm}. \]

Self-interactions of one field

Ratio of contributions of each field

\[\xi_{s,m}(k) = \xi_{s,m}(k_p) \left(\frac{k}{k_p} \right)^{n_f^{(s),(m)}} \]
But...

\[n_{sq.} \equiv \frac{d \ln B_\zeta(k_L, k_S, k_S)}{d \ln k_L} - (n_s - 1) \]
But...

$$n_{sq.} \equiv \frac{d \ln B_\zeta(k_L, k_S, k_S)}{d \ln k_L} - (n_s - 1)$$

★ Just from shift to power spectrum:
\[n_{sq.} \equiv \frac{d \ln B_{\zeta}(k_L, k_S, k_S)}{d \ln k_L} - (n_s - 1) \]

\[\Delta n_{sq.}(k) \equiv n_{sq.}^{\text{obs}}(k) - n_{sq.}^{\text{LargeVol.}}(k) \approx -\frac{6}{5} f_{NL}(k_L) \sigma_{Gl} n_f \left(\frac{6}{5} f_{NL}(k_L) \sigma_{Gl} \right) \]
But...

\[n_{sq.} \equiv \frac{d \ln B_\zeta(k_L, k_S, k_S)}{d \ln k_L} - (n_s - 1) \]

* Just from shift to power spectrum:

\[\Delta n_{sq.}(k) \equiv n_{sq.}^{\text{obs}}(k) - n_{sq.}^{\text{LargeVol.}}(k) \approx -\frac{6}{5} f_{NL}(k_L) \sigma_{Gl} n_f \]

* Allowing \(g_{NL}(k) \) adds another shift

Shandera, CAP, 23 Sept 2013
Scaling Patterns
Scaling Patterns

\[M_{n,R} = \frac{\langle \delta^n_R \rangle_c}{\langle \delta^2_R \rangle_c^{n/2}} \]
Scaling Patterns

\[M_{n,R} = \frac{\langle \delta^n_R \rangle_c}{\langle \delta^2_R \rangle_c^{n/2}} \]

Self-interactions; eg, local ansatz
Scaling Patterns

\[\mathcal{M}_{n,R} = \frac{\langle \delta^n_n \rangle_c}{\langle \delta^2_R \rangle_c^{n/2}} \]

Self-interactions; eg, local ansatz

Hierarchical

\[\mathcal{M}^{(h)}_n = n! \, 2^{n-3} \left(\frac{\mathcal{M}^{(h)}_3}{6} \right)^{n-2} \]
Scaling Patterns

\[M_{n, R} = \frac{\langle \delta^n_R \rangle_c}{\langle \delta^2_R \rangle_c^{n/2}} \]

Self-interactions; eg, local ansatz

Hierarchical

\[M_{n}^{(h)} = n! 2^{n-3} \left(\frac{M_3^{(h)}}{6} \right)^{n-2} \]

\[\propto f_{NL} \mathcal{P}_\zeta^{1/2} \]

Shandera, CAP, 23 Sept 2013
Scaling Patterns

\[M_{n,R} = \frac{\langle \delta^n_R \rangle_c}{\langle \delta^2_R \rangle_c^{n/2}} \]

Self-interactions; eg, local ansatz

Hierarchical
\[M_n^{(h)} = n! \, 2^{n-3} \left(\frac{M_3^{(h)}}{6} \right)^{n-2} \]

Extra source, eg, gauge field
\[\propto f_{NL} P^1_\zeta \]

(Barnaby, Shandera; 1109.2985)
Scaling Patterns

\[\mathcal{M}_{n,R} = \frac{\langle \delta^n_R \rangle_c}{\langle \delta^2_R \rangle_c^{n/2}} \]

Self-interactions; eg, local ansatz

Hierarchical

\[\mathcal{M}^{(h)}_n = n! \, 2^{n-3} \left(\frac{\mathcal{M}^{(h)}_3}{6} \right)^{n-2} \]

Extra source, eg, gauge field

Feeder

\[\mathcal{M}^{(f)}_n = (n - 1)! \, 2^{n-1} \left(\frac{\mathcal{M}^{(f)}_3}{8} \right)^{n/3} \]

(Barnaby, Shandera; 1109.2985)
Scaling Patterns, cont’d

(Quasi-single field)

(Chen, Wang)

Hybrid

\[M_n^{(h)} \propto (A)^n (B)^{n-2} \]
Cosmic Variance and scaling patterns?

\[\Phi(\vec{x}) = \phi(\vec{x}) + \psi_G(\vec{x}) + \tilde{f}_{NL} (\psi_G(\vec{x})^2 - \langle \psi_G(\vec{x})^2 \rangle) \]

Gives `feeder' scaling non-Gaussianity
But: in biased subvolumes, back to hierarchical
Cosmic Variance and scaling patterns?

\[
\Phi(\vec{x}) = \phi(\vec{x}) + \psi_G(\vec{x}) + \tilde{f}_{NL} (\psi_G(\vec{x})^2 - \langle \psi_G(\vec{x})^2 \rangle)
\]

Gives ‘feeder’ scaling non-Gaussianity
But: in biased subvolumes, back to hierarchical

\[
\Phi(\vec{x}) = \phi(\vec{x}) + \tilde{f}_{NL} \psi_G(\vec{x})^p + \ldots
\]

Biased subvolumes: Generate whole local ansatz series, with bias B controlling size of terms

Shandera, CAP, 23 Sept 2013
Implications for Inflation Theory
Power spectrum:

| Inflation | Spectrum of scale-invariant, adiabatic, super horizon modes as “initial conditions” |
Power spectrum:

- Inflation

Spectrum of scale-invariant, adiabatic, super horizon modes as “initial conditions”

Bispectrum, trispectrum, etc?
Power spectrum:

Inflation

Spectrum of scale-invariant, adiabatic, super horizon modes as “initial conditions”

Bispectrum, trispectrum, etc?
Mathematically independent....
Power spectrum:

Inflation

Spectrum of scale-invariant, adiabatic, super horizon modes as “initial conditions”

Bispectrum, trispectrum, etc?

Mathematically independent....

....up to relationships of the type \(\tau_{NL} \geq (6/5 f_{NL})^2 \)

(Smith, LoVerde, Zaldarriaga)
Power spectrum:

- Inflation
 - Spectrum of scale-invariant, adiabatic, superhorizon modes as “initial conditions”

Bispectrum, trispectrum, etc?
- Mathematically independent....
 -up to relationships of the type $\tau_{NL} \geq \left(\frac{6}{5} f_{NL}\right)^2$

Perturbation theory that obeys usual (effective) field theory notions: patterns
- Non-zero NG, but no patterns in shape or size

(Shandera, CAP, 23 Sept 2013)
Mode Coupling Cosmic Var:
Mode Coupling Cosmic Var:

🌟 Derivations didn’t depend on where you got the fluctuations:
Mode Coupling Cosmic Var:

* Derivations didn’t depend on where you got the fluctuations:

* Good: can we find a “natural” pattern inflation does not predict? (If not, is that bad for inflation?)
Mode Coupling Cosmic Var:

Derivations didn’t depend on where you got the fluctuations:

* Good: can we find a “natural” pattern inflation does not predict? (If not, is that bad for inflation?)

* Bad: a random pattern in a big universe may not look random to local observers
Mode Coupling Cosmic Var:

- Derivations didn’t depend on where you got the fluctuations:
 - Good: can we find a “natural” pattern inflation does not predict? (If not, is that bad for inflation?)
 - Bad: a random pattern in a big universe may not look random to local observers

- A familiar aspect of inflation, dressed up in different clothes: IC problem for our observable 60 e-folds region
What about describing only our Hubble patch?

\[
Local: \quad S = \int d^4x \sqrt{-g} \mathcal{L}(X_i, \phi_i, A_{\mu j}, \ldots)
\]

- Apply cosmological principle
- eg, 60 e-folds + non-Bunch Davies is fine tuned.
What about describing only our Hubble patch?

\[
Local: \quad S = \int d^4 x \sqrt{-g} \mathcal{L}(X_i, \phi_i, A^\mu_j, \ldots)
\]

• Apply cosmological principle
• eg, 60 e-folds + non-Bunch Davies is fine tuned.

★ With local type mode-coupling, this line is blurred: observer’s version of the landscape needed
More work:
More work:

🌟 Easy to apply this to other models to check what level of confusion can occur (quasi-single field in progress)
More work:

★ Easy to apply this to other models to check what level of confusion can occur (quasi-single field in progress)

★ Is there a useful notion of landscape and measure here? (not quite ‘theory space’? Quantifiable route!)