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Statistical Analysis of
Supersymmetry Breaking in

Flux Vacua

Michael R. Douglas
Rutgers and I.H.E.S.

String Phenomenology 2004, Michigan

Abstract

Based on hep-th/0303194, hep-th/0405279 and

• hep-th/0307049 with Sujay Ashok

• math.CV/0402326 with Bernard Shiffman and Steve
Zelditch (Johns Hopkins)

• hep-th/0404116 and to appear with Frederik Denef
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1. Predictions from string theory

For almost 20 years we have had good qualitative arguments
that compactification of string theory can reproduce the Stan-
dard Model and solve its problems, such as the hierarchy problem.
But we still seek distinctive predictions which we could regard as
evidence for or against the theory.

One early spin-off of string theory, four dimensional super-
symmetry, is the foundation of most current thinking in “beyond
the Standard Model” physics. Low energy supersymmetry ap-
pears to fit well with string compactification. But would not
discovering supersymmetry, be evidence against string/M the-
ory?

In recent years, even more dramatic possibilities have been
suggested, which would lead to new, distinctive particles or phe-
nomena: large extra dimensions (KK modes), a low fundamental
string scale (massive string modes), or rapidly varying warp fac-
tors (modes bound to branes, or conformal subsectors).

Any of these could lead to dramatic discoveries. But should
we expect string/M theory to lead to any of these possibilities?
Would not discovering them be evidence against string theory?
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Last year in Durham, I discussed a statistical approach to
these and other questions of string phenomenology. Over the
last year, our group at Rutgers, and others, have made major
progress in developing this approach, with

• Detailed results for distributions of flux vacua (with Denef,
Shiffman, and Zelditch).

• Constructions of vacua with all moduli stabilized along lines
of KKLT (with Denef and Florea; see Strings 2004).

• Preliminary results on the statistics of

– supersymmetry breaking scales (MRD, hep-th/0405279
and to appear; see also Susskind, hep-th/0405189; Dine,
Gorbatov and Thomas, hep-th/0407043.

– volume of the extra dimensions (see Strings 2004).

These ideas have already begun to inspire new phenomenolog-
ical models (e.g. Arkani-Hamed and Dimopoulos, hep-th/0405159),
and I start to think that fairly convincing predictions could come
out of this approach over the next few years.

Much work will be needed to bring this about. But we may be
close to making some predictions: those which use just the most
generic features of string/M theory compactification, namely the
existence of many hidden sectors.
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2. Hidden sectors

Before string theory, and during the “first superstring revolu-
tion,” most thinking on unified theories assumed that internal
consistency of the theory would single out the matter content
we see in the real world.

In the early 1980’s it was thought that d = 11 supergravity
might do this.

Much of the early excitement about the heterotic string came
from the fact that it could easily produce the matter content of
E6, SO(10) or SU(5) grand unified theory.

But this was not looking at the whole theory. The typical
compactification of heterotic or type II strings on a Calabi-Yau
manifold has hundreds of scalar fields, larger gauge groups and
more charged matter. Already in the perturbative heterotic string
an extra E8 appeared. With branes and non-perturbative gauge
symmetry, far larger groups are possible.

If we live in a “typical” string compactification, it seems very
likely that there are many hidden sectors, not directly visible to
observation or experiment.

Should we care? Does this lead to any general predictions?
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Hidden sectors may or may not lead to new particles or forces.
But what they do generically lead to is a multiplicity of vacua,
because of symmetry breaking, choice of vev of additional scalar
fields, or other discrete choices.

Let us say a hidden sector allows c distinct vacua or “phases.”
If there are N hidden sectors, the multiplicity of vacua will go as

Nvac ∼ cN .

While the many hidden sectors certainly make the detailed
study of string compactification more complicated, we should
consider the idea that they lead to simplifications as well.

Thus we might ask, what can we say about the case of a
large number N of hidden sectors ? Clearly there will be a large
multiplicity of vacua.
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We only live in one vacuum. However, as pointed out by
Brown and Teitelboim; Banks, Dine and Seiberg (and no doubt
many others), vacuum multiplicity can help in solving the cos-
mological constant problem. In an ensemble of Nvac vacua with
roughly uniformly distributed c.c. Λ, one expects that vacua will
exist with Λ as small as M 4

pl/Nvac.
To obtain the observed small nonzero c.c. Λ ∼ 10−122M 4

pl, one
requires Nvac > 10120 or so.

Now, assuming different phases have different vacuum ener-
gies, adding the energies from different hidden sectors can pro-
duce roughly uniform distributions. In fact, the necessary Nvac

can easily be fit with Nvac ∼ cN and the parameters c ∼ 10,
N ∼ 100 − 500 one expects from string theory, as first pointed
out by Bousso and Polchinski.

One might regard fitting the observed small nonzero c.c. in
any otherwise acceptable vacuum as solving the problem, or one
might appeal to an anthropic argument such as that of Wein-
berg to select this vacuum. In the absence of other candidate
solutions to the problem, we might even turn this around and
call these ideas evidence for the hypothesis that we are in a
compactification with many hidden sectors.
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3. Stringy naturalness

So can we go further with these ideas? Another quantity which
can get additive contributions from different sectors is the scale
of supersymmetry breaking. Let us call this M 2

susy (we will define
it more carefully below).

We recall the classic arguments for low energy supersymmetry
from naturalness. The electroweak scale mEW is far below the
other scales in nature Mpl and MGUT . According to one definition
of naturalness, this is only to be expected if a symmetry is re-
stored in the limit mEW → 0. This is not true if mEW is controlled
by a scalar (Higgs) mass mH, but can be true if the Higgs has a
supersymmetric partner (we then restore a chiral symmetry).

A more general definition of naturalness requires the theory to
be stable under radiative corrections, so that the small quantity
does not require fine tuning. Again, low energy supersymmetry
can accomplish this. Many theories have been constructed in
which

M 2
H ∼ cM 2

susy,

with c ∼ 1/10 without fine tuning. Present data typically requires
c < 1/100, which requires a small fine tuning (the “little hierarchy
problem.”)
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On the other hand, the solution to the cosmological constant
problem we accepted above, in terms of a discretuum of vacua,
is suspiciously similar to fine tuning the c.c., putting the role of
naturalness in doubt.

What should replace it?

The original intuition of string theorists was that string theory
would lead to a unique four dimensional vacuum state, or at least
very few, such that only one would be a candidate to describe
real world physics. In this situation, there is no clear reason the
unique theory should be “natural” in the previously understood
sense.

With the development of string compactification, it has be-
come increasingly clear that there is a large multiplicity of vacua.
The vacua differ not only in the cosmological constant, but in
every possible way: gauge group, matter content, couplings, etc.
What should we do in this situation?
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The “obvious” thing to do at present is to make the following
definition:

An effective field theory (or specific coupling, or
observable) T1 is more natural in string theory than T2,
if the number of phenomenologically acceptable vacua
leading to T1 is larger than the number leading to T2.
(Douglas, 0303194; Susskind, 0406197)

Now there is some ambiguity in defining “phenomenologically”
(or even “anthropically”) acceptable. One clearly wants d = 4,
supersymmetry breaking, etc. One may or may not want to put
in more detailed information from the start.

In any case, the unambiguously defined information provided
by string/M theory is the number of vacua and the distribution
of resulting EFT’s. For example, we could define

dµ[M 2
H ,M

2
susy,Λ] = ρ(M 2

H ,M
2
susy,Λ)dM 2

H dM 2
susy dΛ

=
∑
Ti

δ(M 2
susy −M 2

susy|Ti)δ(M
2
H −M 2

H |Ti)δ(Λ− Λ|Ti)

a distribution which counts vacua with given c.c., susy breaking
scale and Higgs mass, and study the function

ρ(104 GeV2,M 2
susy,Λ ∼ 0).
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4. Explicit results for flux vacua

While it may sound overly ambitious to compute a distribution
like

dµ[M 2
H ,M

2
susy,Λ],

in fact we start to see how to do it for one large class of vacua:
compactification of the IIb string on CY with flux, as developed
by Giddings, Kachru and Polchinski.

This produces a large class of effective supergravity theories,
which can be made completely explicit using techniques devel-
oped in the study of mirror symmetry (Candelas et al). For ex-
ample, the superpotential is the “flux superpotential” of Gukov,
Taylor, Vafa and Witten,

W =

∫
Ω(z) ∧

(
F (3) + τH(3)

)
.

While this is exact only in the large volume, weak string cou-
pling limit, it is dual to a large class of gauge theories which
includes many non-perturbative effects, and could be represen-
tative of the general situation.
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To warm up, let us consider the simplest such problem: the
distribution of supersymmetric flux vacua on a a rigid CY, i.e.
with b2,1 = 0 (for example, the orbifold T 6/Z3). We do not discuss
stabilizing Kähler moduli here, so the only modulus is the dilaton
τ , with Kähler potential K = − log Im τ .

For the rigid CY, this reduces to

W = Aτ +B; A = a1 + Πa2;B = b1 + Πb2

with Π =
∫

Σ2
Ω(3)/

∫
Σ1

Ω(3), a constant determined by CY geometry.

Now it is easy to solve the equation DW = 0:

DW = ∂W
∂τ
− 1

τ−τ̄W

= −Aτ̄−B
τ−τ̄

so DW = 0 at

τ̄ = −
B

A

where τ̄ is the complex conjugate.
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Here is the resulting set of flux vacua for L = 150 and Π = i:

-0.5 0.5

1

2

3 This graph was obtained by enu-
merating one solution of a1b2−a2b1 =
L in each SL(2, Z) orbit, taking the
solution τ = −(b1− ib2)/(a1− ia2) and
mapping it back to the fundamental
region.
The total number of vacua is N =
2σ(L), where σ(L) is the sum of the
divisors of L. Its large L asymp-
totics are N ∼ π2L/6.

A similar enumeration for a Calabi-Yau with n complex struc-
ture moduli, would produce a similar plot in n + 1 complex di-
mensions, the distribution of flux vacua. It could (in principle)
be mapped into the distribution of possible values of coupling
constants in a physical theory.
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The intricate distribution we just described has some simple
properties. For example, one can get exact results for the large
L asymptotics, by computing a continuous distribution ρ(z, τ ;L),
whose integral over a region R in moduli space reproduces the
asymptotic number of vacua which stabilize moduli in the region
R, for large L, ∫

R

dzdτ ρ(z, τ ; L) ∼L→∞ N(R).

0.1 0.2 0.3

500

1000

1500

2000

2500

For a region of radius r,
the continuous approximation
should become good for L >>
K/r2. For example, if we
consider a circle of radius r
around τ = 2i, we match on
to the constant density distri-
bution for r >

√
K/L.

Another one complex structure modulus example with r <√
K/L was discussed by Girvayets, Kachru, Tripathy 0404243.
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Explicit formulas for these densities can be found, in terms of
the geometry of the moduli space C. The simplest such result
(with Ashok) computes the index density of vacua:

ρI(z, τ) =
(2πL)b3

b3!πn+1
det(−R− ω · 1)

where ω is the Kähler form and R is the matrix of curvature two-
forms. Integrating this over a fundamental region of the moduli
space produces an estimate for the total number of flux vacua.
For example, for T 6 we found I ∼ 4 · 1021 for L = 32.

This density is “topological” and there are mathematical tech-
niques for integrating it over general CY moduli spaces (Z. Lu
and MRD, work in progress). Good estimates for the index
should become available for a large class of CY’s over the coming
years.
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5. Distributions of flux vacua

Let us look at the details of the distribution of flux vacua on
the mirror quintic (K = 4 and n = 1), as a function of complex
structure modulus:

-3 -2 -1 1 2 3

0.005

0.01

0.015

0.02

0.025

0.03

ψ

gπρ   /12

Note the divergence at ψ = 1, the conifold point. It arises
because the curvature R ∼ ∂∂̄ log log |ψ − 1|2 diverges there. The
divergence is integrable, but a finite fraction of all the flux vacua
sit near it.



Predictions from . . .

Hidden sectors

Stringy naturalness

Explicit results . . .

Distributions of . . .

Susy breaking

Conclusions

Home Page

Title Page

JJ II

J I

Page 16 of 35

Go Back

Full Screen

Close

Quit

The peak near the conifold point can be understood in terms
of its dual gauge theory interpretation (Maldacena, Klebanov,
Strassler, Gopakumar, Vafa, ...), in which the parameter S = ψ−1
above is reinterpreted as the gaugino condensate. Fluxes directly
control the gauge coupling g and lead to a distribution d2τ/(Im τ 2)
with τ = i/g2

YM + θ, i.e.

dµ[g] ∼ d(gYM)2.

The structure of the flux superpotential then reproduces the
standard S = e−1/g2, leading to the distribution

dµ[S] ∼
d2S

|S logS|2
.

Quantitatively, for the mirror quintic, about 3% of vacua sit
near the conifold point, with an induced scale |ψ−1| < 10−3. More
generally, the total number of vacua goes as Nvac|S<S∗ ∼ 1

| logS∗|
.

Vacua close to conifold degenerations are interesting for model
building, as they provide a natural mechanism for generating
large scale hierarchies (by dual gauge theory, or in supergravity
as in Randall and Sundrum, etc.). We have found that such
vacua are common, but are by no means the majority of vacua.
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Suppose we go on to break supersymmetry by adding an anti
D3-brane, or by other D term effects. The previous analysis ap-
plies (since we have not changed the F terms), but now it is
necessary that the mass matrix at the critical point is positive.

The distribution of tachyon-free D breaking vacua is

-3 -2 -1 1 2 3

0.00025

0.0005

0.00075

0.001

0.00125

0.0015

0.00175

0.002

ψ

gπρ   /12

In fact, most D breaking vacua near the conifold point have
tachyons (for one modulus CY’s), so we get suppression, not
enhancement. This is not hard to understand in detail; the
mechanism is a sort of “seesaw” mixing between modulus and
dilaton, which seems special to one parameter models.
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Here is the distribution of (negative) AdS cosmological con-
stants Λ̂ = 3eK |W |2, both at generic points (left) and near the
conifold point (right). Note that at generic points it is fairly
uniform, all the way to the string scale. On the other hand,
imposing small c.c. competes with the enhancement of vacua
near the conifold point.
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The left hand graph compares the total number of vacua
(green) with the index (red). The difference measures the num-
ber of Kähler stabilized vacua, vacua which exist because of the
structure of the Kähler potential, not the superpotential.
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6. Susy breaking

D breaking vacua (with DW = 0) are described by the earlier re-
sults, just we require the vacua to be tachyon free and have near
zero c.c. With Denef, we have analyzed F breaking flux vacua
in orientifolds in some detail (hep-th/0404116 and to appear).
These satisfy

0 = ∂IV = ZIJ F̄
J − 2FIW̄ and F 6= 0;V ′′ > 0 (1)

where
W = W (z); FI = DIW (z); ZIJ = DIDJW (z).

Varying both fluxes and CY moduli scans a certain subspace of
these parameters, and the question is what part of this subspace
satisifies (1).

In fact (1) can be written as the condition that FI is an eigen-
vector of a certain matrix constructed from W and Z, and the
condition V ′′ > 0 (no tachyons) becomes the condition that FI
has the lowest positive eigenvalue.

Since all matrices have such eigenvectors, metastable F break-
ing vacua are generic.
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This includes the “traditional” vacua in which susy breaking
takes place at hierarchically small scales.

But there is nothing in the computations which requires the
susy breaking to be at small scales. A priori, it might equally well
be at high scales. So which is more “natural” in string theory ?

Thus we come back to the problem of computing or estimat-
ing the distribution

dµ[M 2
H ,M

2
susy,Λ]

at the observed values MH ∼ 100 GeV, Λ ∼ 0.

This is a hard problem which cannot (yet) be solved in any
detail. To address it, we need to combine existing work and intu-
itions, carefully removing the presupposition of all previous
work that low scale breaking was required to solve the hier-
archy problem, with the new information from string/M theory.

Of course, the best we could do at present is discuss the
distribution of the classes of vacua we know about; there might
be others. But consensus has not yet been reached as to what
even this predicts.
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One idea which most authors agree on (so far) is that, even
if a model has large soft mass terms M 2

0 , statistical fine tuning
will produce the correct Higgs mass. in (roughly) a fraction

M 2
H

M 2
0

=

∫ M2
H d(M 2

H)

M 2
0

of the models.

This is plausible if M 2
H is a sum of independent positive and

negative contributions. Typically, M 2
H receives radiative correc-

tions of both signs. Furthermore, unlike the other scalars, the
Higgs in the MSSM are non-chiral, leading to the mass terms

µ(|H1|2 + |H2|2) +m2
1|H1|2 +m2

2|H2|2 +BµH1H2,

and the Bµ term is a negative contribution to M 2
H.

We also need to assume that a finite fraction of models solve
the µ problem.
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Analogously, one might try to argue that since Msusy → 0 leads
to Λ → 0, the Λ distribution is

dµ[M 2
susy,Λ] ∼

dΛ

M 4
susy

dµ[M 2
susy].

However, this is not true: in supergravity,

Λ =
∑

|F |2 + |D|2 − 3eK |W |2

and does not go to zero as F,D → 0.

In fact the flux vacua results show that the distribution of
the parameter eK |W |2 (not |W |) is fairly uniform, from zero all
the way to the string scale. The physics behind this is that the
superpotential W is a sum of contributions from the many sec-
tors. This includes supersymmetric hidden sectors, so there is no
reason W should be correlated to the scale of supersymmetry
breaking, and no reason the cutoff on the W distribution should
be correlated to the scale of supersymmetry breaking.

Such a sum over randomly chosen complex numbers will tend
to produce a distribution

d2W =
1

2
dθd(|W |2) =

1

2
dθd(|W |2)

uniform out to the cutoff scale, which in flux vacua is LM 4
s .
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Thus, an arbitrary supersymmetry breaking contribution to
the vacuum energy can be compensated by the −3eK |W |2 term,
with no preferred scale. The need to get small c.c. does not
favor a particular scale of susy breaking in these models.

Thus, the joint distribution goes as

dµ[M 2
susy,Λ] ∼

dΛ

M 4
str

dµ[M 2
susy].

Again, all workers agree on this so far.
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We now need to estimate dµ[M 2
susy], so we must define Msusy.

The most universal definition is

M 4
susy =

∑
i

|Fi|2 +
∑
α

D2
α,

the quantity which determines the gravitino massM 2
3/2 = M 4

susy/M
2
pl.

How is this related to the soft masses M 2
0 which entered the

earlier claim that that dµ[M 2
H ] ∼ d(M 2

H)/M 2
0 ? This relation is

model dependent as there are many ways to mediate super-
symmetry breaking:

• Generic supergravity contributions (non-renormalizable terms
in K; radiative corrections):

M 2
0 ∼M 2

3/2 ∼M 4
susy/M

2
pl.

• Gauge mediation:
M 2

0 ∼ λkM 2
susy,

suppressed by powers of coupling constants.

• others?
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A plausible summary of the current understanding (Dine, Gor-
batov and Thomas 0407043) is to say that

• If Msusy > (MHMpl)1/2 ∼ 1010 GeV, supergravity contributions
will dominate, and M 2

0 ∼M 2
3/2 ∼M 4

susy/M
2
pl. Then,

dµ[M 2
H ,M

2
susy] ∼

M 2
H

M 4
susy/M

2
pl

M 2
susy > MHMpl

in a relatively model independent way.

• If Msusy ≤ (MHMpl)1/2 ∼ 1010 GeV, we assume that the various
mediation mechanisms are generic, allowing models with M 2

0

arbitrarily smaller than M 2
susy. Dine et al model this with the

distribution

dµ[M 2
H ,M

2
susy] ∼ 1 M 2

susy ≤MHMpl
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So what is dµ[M 2
susy] ?

While we have not finished our computations, so far they sup-
port the standard intuition that gauge theory non-perturbative
effects can drive supersymmetry breaking. Let us grant this:

dµ[F ] ∼ dµ[S] ∼ dµ[ψ − 1]

in the mirror quintic example we discussed earlier.

Recall that distribution of flux vacua:

-3 -2 -1 1 2 3

0.005

0.01

0.015
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0.025

0.03

ψ

gπρ   /12
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The rough description of the resulting distribution is a large
uniform component added to a smaller component at hier-
archically small scales,

dµ[F ] ∼ c
dF

F
+ (1− c)dF.

For the mirror quintic, we saw c ∼ .03.

Another way to say this, is that the d(g2
YM) distribution for

gauge couplings, allows for a large gYM ∼ 1 component, in which
there is no hierarchically small scale.

The larger point, is that (so far) we see nothing in string/M
theory which ties supersymmetry breaking directly with hierar-
chically small scales. Thus, we must take the possibility of high
scale vacua seriously.

Of course, the previous results fit the usual idea that low scale
susy breaking could solve the hierarchy problem. In fact we found

dµ[M 2
H ,M

2
susy,Λ] ∼

dM 2
H

M 4
susy/M

2
pl

dΛ

M 4
str

dµ[M 2
susy] M 2

susy > MHMpl

which is a stronger bias than the naive M 2
H/M

2
susy (but not as

strong as including the c.c. would have produced).
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The upshot is that high scale breaking will be favored if

d[M 2
susy] ∼M 2α

susydM
2
susy

with α > 1 (since most “phase space” is at large M 2
susy).

A uniform distribution will not do this; while a hypothetical
d2F distribution would be on the edge. But there is a very simple
effect which in principle could. Namely, since

M 4
susy =

∑
|F |2 +D2

is a sum of many positive terms, if the terms are roughly inde-
pendent with any significant uniform component in their distri-
bution, the overall distribution heavily favors high scale breaking
(DD 0404116, MRD 0405279, Susskind, hep-th/0405189).

For example, convolving uniform distributions gives

ρ(M 2
susy) =

∫ ∏nF

i=1 d
2F

∏nD

α=1 dD dM 4
susy δ(M

4
susy −

∑
|F |2 −

∑
D2)

∼ (M 2
susy)

2nF +nD−1dM 2
susy

Combining this with the factor m2
H/M

2
susy, we find that high

scale susy breaking is favored if 2nF + nD > 2, a condition surely
satisfied by almost all string models.
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Now the distribution we suggested earlier was not uniform:
there was a second component (with fraction c) counting susy
breaking vacua at hierarchically small scales. A rough descrip-
tion of the effects of this is that low scale breaking requires all
breaking parameters to come from the low scale part of the dis-
tribution, a fraction cn of vacua. If any sector sees the uniform
component, high scale breaking will result.

This leads to the estimate that high scale breaking would be
preferred if the number of moduli satisfies

n > log1/c

M 2
H

M 2
high

∼ 100

even taking c ∼ .5. Since the vast majority of CY’s have more
than 20 moduli, and we need many moduli to tune the c.c., this
argument seems to predict high scale supersymmetry breaking.

There are many potential loopholes in such a claim; for ex-
ample stringy effects not yet considered might lower the cutoff
on the F distributions.
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But, having continued our computations, it now appears that
it is not at all true that the various components in F are in-
dependently distributed. The summary I gave of solving the
equations for non-supersymmetric vacua,

0 = ∂IV = ZIJ F̄
J − 2FIW̄ ,

was that this amounted to finding eigenvectors of the matrix
ZIJ . For a typical matrix without degenerate eigenvalues, the
eigenspaces are one dimensional, and this leads to distributions

dµ[FI ] = dF δ(FI − FψI)

where ψI is the eigenvector.

This leads to the uniform distribution d(M 2
susy).

The possibility of power law growth dµ[F ] ∼ F 2n−2d2F dis-
cussed above corresponds to matrices ZIJ with degenerate eigen-
values. While possible, it now appears to us that this is suffi-
ciently non-generic to suppress these components of the distri-
bution.
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If this holds up, we would predict

dµ[M 2
H ,M

2
susy] ∼ d(M 2

H) ·
dM 2

susy

M 4
susy/M

2
pl

which, while not as strong as the suppression of high scale models
claimed by Dine et al, would suffice to favor low scale breaking.

Note that the claim is on the edge – if we get instead a uniform
d2F ∼ M 2

susyd(M
2
susy), we would obtain d(M 2

susy)/Msusy2 which is a
log uniform distribution, not strongly favoring any scale.
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Many points would have to be nailed down to get a convincing
argument one way or the other. Perhaps the two which emerged
most clearly from our discussion are to push through the formal
computations of distributions of nonsupersymmetric vacua in a
variety of constructions, and to understand what cuts off the
high end of the distribution of supersymmetry breaking scales.

To name a few more issues, it might be that physics we ne-
glected also puts a lower cutoff on the maximal flux for super-
symmetric vacua, it might be that the µ problem is hard to solve,
there might be large new classes of nonsupersymmetric vacua,
etc. Even if the majority of string/M theory vacua predicted
high scale susy, one might try to argue that the initial conditions
biased the distribution, etc.

In any case, we explained a simple observation, namely the
existence of vacua with high breaking scales in hidden sectors,
and the large multiplicity of hidden sectors, which force us to
seriously consider the possibility that there are so many high
scale models that high scale supersymmetry breaking becomes
the natural outcome of string/M theory compactification.
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7. Conclusions

We have gone some distance in justifying and developing the
statistical approach to string compactification:

We have explicit results for distributions of flux vacua of many
types: supersymmetric, non-supersymmetric, tachyon-free. They
display a lot of structure, with suggestive phenomenological im-
plications:

• Large uniform components of the vacuum distribution.

• Enhanced numbers of vacua near conifold points.

• Correlations with the cosmological constant.

• Falloff in numbers at large volume and large complex struc-
ture.

We have specific IIb orientifold compactifications in which all
Kähler moduli are stabilized, and vacuum counting estimates
which suggest that all moduli can be stabilized. We are con-
tinuing, and are attempting to check all known consistency
conditions in simple examples, leading to constructions of large
numbers of string/M theory vacua.
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There are intuitive arguments for some of the most basic
properties of the distributions. For example, the −3|W |2 contri-
bution to the supergravity potential is uniformly distributed with
a large (at least string scale) cutoff, because of contributions
from supersymmetric hidden sectors. Thus, the need to tune
the c.c. does not much influence the final numbers.

We start to see the possibility of making real world predictions:

• Large extra dimensions are heavily disfavored with the present
stabilization mechanisms.

• Hierarchically small scales (gauge theoretic or warp factor)
are relatively common.

• Supersymmetry breaking in hidden sectors may favor high
scales of supersymmetry breaking.

At present we think the last of these does not come out, and
low scales will be statistically preferred, but the question is still
not settled.

Going beyond flux vacua, a next step will be to make argu-
ments for the distribution of gauge groups and representations
and other structure in the matter sector, which could give in-
sight into the statistics of models realizing various mediation
mechanisms (among other questions).



Predictions from . . .

Hidden sectors

Stringy naturalness

Explicit results . . .

Distributions of . . .

Susy breaking

Conclusions

Home Page

Title Page

JJ II

J I

Page 35 of 35

Go Back

Full Screen

Close

Quit

While many assumptions entered into the arguments we gave,
the only essential ones are that

• Our present pictures of string compactification are repre-
sentative of the real world possibilities.

• The absolute number of relevant string/M theory compact-
ifications is not too high.

With further work, all the other assumptions can be justified
and/or corrected, because they were simply shortcuts in the
project of characterizing the actual distribution of vacua.

Since interesting results already follow from general proper-
ties of the theory, and we now have evidence that the detailed
distribution of string/M theory vacua has many simple proper-
ties, we are optimistic that a reasonably convincing picture of
supersymmetry breaking and other predictions can be developed
in time for Strings 2008 at CERN.
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