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CONCISE HISTORY OF STRING THEORY

e Began 1968 with Veneziano model.

e 1968-1974 dual resonance models for strong
interactions. Replaced by QCD around 1973.
DRM book 1974. Hiatus 1974-1984

e 1984 Cancellation of hexagon anomaly.

¢ 1985 F/(8) x E(8) heterotic strong compacti-
fled on Calabi-Yau manifold gives temporary
optimism of TOE.

e 1985-1997 Discovery of branes, dualities, M
theory:.

¢ 1997 Maldacena AdS/CFT correspondence
relating 10 dimensional superstring to 4 di-
mensional gauge field theory.

e 1997-present Insights into gauge field theory
including possible new states beyond stan-
dard model. String not only as quantum
oravity but as powerful tool in nongravita-
tional physics.



MORE ON STRING DUALITY:

Duality: Quite different looking descriptions
of the same underlying theory:.

The difference can be quite striking. For ex-
ample, the AdS/CF'T correspondence describes
duality between a d = 4 SU(N) GFT and a
D = 10 superstring. Nevertheless, a few non-
trivial checks have confirmed this correspon-
dence.

In i1ts most popular version, one takes a Type
[IB superstring (closed, chiral) in d = 10 and
one compactifies on:

(AdS); X S°



Perturbative finiteness of

N =4 SUSY Yang-Mills theory.

e Was proved by Mandelstam, Nucl. Phys.
B213, 149 (1983).

e The Malcacena correspondence is primarily
aimed at the N — oo limit with the 't Hooft

parameter of N times the squared gauge cou-
pling held fixed.

e Conformal behavior valid here also for finite
N.



[T BREAKING SUPERSYMMETRIES

To approach the real world, one needs less or
no supersymmetry in the (conformal?) gauge
theory:.

By factoring out a discrete (abelian) group and
composing an orbifold:

S°/T

one may break N = 4 supersymmetry to N =
2, 1,or 0. Of special interest is the N' = 0
case.



We may take I' = Z), which identifies p points
in Cs.

The rule for breaking the N' = 4 supersym-
metry 1s:

rcsv@2 = N=2
rcsSv@) = N=1

¢ SUB) = N=0

In fact to specify the embedding of I' = Z,, we
need to identify three integers (ay, as, a3):

7
C3: (X1,X2,X3) = (a™X1,a"Xs, a3 X3)
with

a = exp

27T'L')
P



What is known to be true - proved both from
string theory in

Bershadsky, Kakushadze and Vafa, hep-
th /9803076,

and from field theory]L in
Bershadsky and Johansen, hep-th /9803349,

- is that to leading order in (1/N) such theories

have all 8 = 0 (B4 = By = By = 0) to all
orders of GF'T perturbation theory:.

This is remarkable from the field theory point

of view.

I This proof involves I" projections of the states
and turns out to be disappointingly kinematic.



Without the stimulus of AdS/CFT it would be:

e Difficult to guess any N = 0 theory with all
[—tunctions vanishing to all orders of pertur-
bation theory, even for leading order in 1/N.

e Because without renormalizarion theorems
(N = 0) there is an infinite number of con-
straints on a finite number of representations.



MATTER REPRESENTATIONS

e The Z; discrete group identifies p points in
Cs.

e The N converging D3-branes meet on all
p copies, giving a gauge group: SU(N) X
SU(N) X ...... x SU(N).

e The matter (spin-1/2 and spin-0) which sur-
vives is invariant under a product of a gauge
transformation and a Zj transformation.
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One can draw p points and arrows for
ai, az, ag.

e.g. 75 (1,3,0)
Quiver diagram (Douglas-Moore).
Scalar representation is:

3 P _
2 (N1, Nidg,)
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For termions, one must construct the 4 of R-
parity SU(4):

From the a;, = (a1, a9, ag) one constructs the

4—spinor AM — (AL AQ, Ag, A4) :

1
Ar = S(ar +ag + a3)
1
Ay = 5(@1 — ag — as)
1
Ag = 5(—&1 + a9 — as)
1
Ay = 5(—a1 — ag + as)

These transform as exp (%A@ and the invari-

ants may again be derived (by a different dia-
gram):
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e.g.Ay=2; p=02.

These lines are oriented.
One finds for the fermion representation

4 P =
12 Wi Nigay)



Nevertheless, since 4 global supersymmetries
give conformality including for finite N (all
B—functions vanish)

e To all orders of perturbation theory even for
finite N of SU(IN) we can be more ambitious
and ask for finiteness without any global su-
persymmetry and finite N of SU(N).
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2 - LOOP BETA FUNCTIONS

We know that if T is absent the resultant N' =
4 SUSY SU(N) GFT has By = By = B =0
to all orders (the proof of Mandelstam, 1983).
When supersymmetries are broken, one must
check in more detail:

By = By + B

3
m__ g9 |1 4 1

Here the quadratic Casimir is Co(G) = N. The
Dynkin indices are So(F) = 4N and So(S) =
6N for the fermion (k = 1/2 for Weyl spinors )
and scalar representations respectively.

Thus &(]1) = 0.
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The general expression for /5’52) Is:

34

D
2) ___9
b 3

g (471')4 (CQ<G>>2_

; [402(F) + 23()02((;)) So(F)—

(202(5) + ;OQ(G)j Sy(8) 4+ UL >]

92
In 5&2) the 1st, 3rd and 5th of the six terms
are the same in all theories, namely:
34N? 40N?

3 3
In the 2nd and 4th terms there is an implicit

sum over irreducible representations. In the 6th
term are Yukawa couplings Y4 (F).

_9N? = _4N?
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HOW MANY CANDIDATES FOR
N =0d =4 CONFORMAL THEORIES?

Zp (&1, a, CL3)

a1 < a9 < a3

Let us define v (p) to be the number of different
theories with k non-zero a;.

For v1(p) we note that (0,0, a3) is equivalent
to (0,0, p — ag) and hence

vi1(p) = p/2]

where | x| is the largest integer not greater than
X.

17



Consider:
vo(p)

where there is the equivalence of:

(07 a, CL3) = (07]7 — ag,p — CLQ)

One finds that for p = even

[(p—2)/2] 1
2 r

vo(p) = 2 = b —2)

r=1

while for p = odd

[(p—2)/2] 1

vlp)=2" = r+lp/2]= (- 1)7
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Finally consider vg(p). This counting is only
slightly more intricate.

One uses:
v5(0) = S{P(p) — vplp) + vsE(D)
(discuss)

Define vro7aL(p) = vi(p) + vao(p) + v3(p).
The results depend on what is the remainder

when p is divided by 6.

If p = 6k, vroTAL(p) = HP* + 20+ 2).

If p =6k + 1 or 6k + 5, then vy 47(p) =
o0 =D+ 1D(p+2).

If p = 6k+2 or 6k + 4, vroTAL(P) = 1H(P° +
2p° 4+ 2p +4).

Finally it p = 6k4+3, vroT4a1 = %@34_2172 _
p—6).

19



p ||vilp) ve(p) wvs(p) | vroTar(®) | D vroTAL || Vative(P) | D Vaiive (D)
2 1 0 1 2 2 0 0
3 1 1 1 3 5 1 1
4 2 2 5 9 14 1 2
5 2 4 8 14 28 4 6
6 3 6 16 25 53 5 11
7 3 9 24 36 89 9 20
8 4 12 39 55 144 10 30
9 4 16 53 73 217 16 46
10 5 20 77 102 319 18 64
11 5 25 100 130 449 25 89
12 6 30 134 170 619 27 116
13 6 36 168 210 829 36 152
14 7 42 215 264 1093 39 191
15 7 49 261 317 1410 49 240
16 8 56 323 387 1797 52 292
17 8 64 384 456 2253 64 356
18 9 72 462 543 2796 68 424
19 9 81 540 630 3426 81 505
20 10 90 637 737 4163 85 590
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p ||vilp) ve(p) wvs(p) | vroTar(®) | D vroTAL || Vative(P) | D Vaiive (D)
21 10 100 733 843 5006 100 690
22 11 110 851 972 5978 105 795
23 11 121 968 1100 7078 121 916
24 12 132 1108 1252 8330 126 1042
25 12 144 1248 1404 9734 144 1186
26 13 156 1413 1582 11316 150 1336
27 13 169 1577 1759 13075 169 1505
28 14 182 1769 1965 15040 175 1680
29 14 196 1960 2170 17210 196 1876
30 15 210 2180 2405 19615 203 2079
31 15 225 2400 2640 22255 225 2304
32 16 240 2651 2907 25162 232 2536
33 16 256 2901 3173 28335 256 2792
34 17 272 3185 3474 31809 264 3056
35 17 289 3468 3774 35583 289 3345
36 18 306 3796 4110 39693 297 3642
37 18 324 4104 4446 44139 324 3966
38 19 342 4459 4820 48959 333 4299
39 19 361 4813 5193 54152 361 4660
40 20 380 5207 5607 59759 370 5030
41 20 400 5600 6020 65779 400 5430
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DIRECTITONS:

e Selection process for N/ = 0 begun by con-
sidering 1- and 2- loop S—tfunctions.

e At 1-loop, all such theories pass because they
are coincident (leading N) with N/ = 4.

e At 2 loops, for the gauge S—tfunction, a sig-
nificant number of the models examined sur-
vive.

e Checking of Yukawa and ¢* S—functions at
2 loops is being pursued in a student’s PhD
dissertation.
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Beyond that:

o [f all 2 loop requirements are satisfied, at 3
or more loops explicit calculations become
impracticable - general arguments based on
symmetry may succeed.

e Question of uniqueness of N' = 0 theory.

e Use of N/ = 0 quivers in model building to
be discussed later.
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Philosophical Question on

Renormalization

e Infinite renormalization of QED was greeted
with skepticism but soon universally accepted
due to exceptionally successful accuracy.

e If the finiteness of N' = 4 had been known
then would the skepticism have been more
persistent”?

24



CONFORMALITY AND

PARTICLE PHENOMENOLOGY

e Hierarchy between GUT scale and weak scale
1s 14 orders of magnitude. Why do these two
very different scales exist”?

e How is this hierarchy of scales stabilized un-
der quantum corrections?

e Supersymmetry answers the first question
but not the second.

25



Successes of

Supersymmetry

e Cancellations of UV infinities.
e technical naturalness of hierarchy:.
e Unification of Gauge Couplings.

e Natural appearance in string theory.
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Puzzles about

Supersymmetry

e The “mu” problem: why is the Higgs at the
weak scale not the GUT scale (hierarchy).

e Breaking supersymmetry leads to too large a
cosmological constant.

e [s supersymmetry fundamental for string the-
ory?

e There are solutions of string theory without
supersymmetry.

27



Supersymmetry and Grand Unification

replaced by Conformality at TeV Scale.

e Will show idea is possible.

e [ixplicit examples containing standard model
states.

e Conformality more rigid constraint than su-
persymmetry:.

e Predicts additional states at TeV scale for
conformality:.

e Gauge coupling unification.

28



Conformality as

hierarchy solution

e Quark and lepton masses, QCD and weak
scales small compared to TeV scale.

e May be put to zero suggesting:

e Add degrees of freedom to yield GFT with
conformal invariance.

e 't Hooft naturalness since zero mass limit in-
creases symmetry to conformal symmetry:.

20



The theory is assumed to be given by the ac-
tion:

S = Sy + [ d*ze;0; (1)

where S is the action for the conformal theory
and the O; are operators with dimension below
four which break conformal invariance softly.

The mass parameters «; have mass dimension
4 — A; where A; is the dimension of O; at the
conformal point.

Let M be the scale set by the parameters a; and
hence the scale at which conformal invariance is
broken. Then for £ >> M the couplings will
not run while they start running for £ < M.
To solve the hierarchy problem we assume M is
near the TeV scale.
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Large class of d=4 CFTs

- each SU(4) subgroup

e Choice of N.

e 1/N vanishing f— functions.

e Finite N7

e Conformal invariance at infra-red fixed point.

e For N/ = 0 there exists boson-fermion num-
ber equality:.
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Interactions. Gauge fields interact according
to gauge coupling which, combined with corre-
sponding theta angle for i th group, is writable
as

i Td;
dmg; [T
where 7 is complex parameter (independent i)
and |I'| = order I'.

T, = 0; +

Yukawa interactions. Triangles in quiver. Two
directed fermion sides and an undirected scalar

side.

1
SY ukawa = ) 2 dabcTT\Ij (D]kqjkz

g
in  which is ascertainable as Clebsch-
Gordan coeflicient from product of trivial repre-
sentaions occurring respectively in (4 R; @ R7),

(6eRjeo R}) and (4e Ry e ;).

dabc

Quartic scalar interactions. Quadrilaterals in
quiver. Four undirected sides. The coupling
computable analagously to above.
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Large class of d=4 CFTs
e Are they conformal for higher orders in 1/N?

e YES, for N’ = 2: all such N = 2 theories are
obtainable.

e YES, for N' = 1: non-renormalization theo-
rems ensure flat directions.

e For the case of N' = 0, general answer un-
known but is under investigation.
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Large class of d=4 CFTs

e Are they conformal for higher orders in 1/N?

e S-duality of underlying type IIB superstring
implies g — 1/¢ symmetry.

e Assuming next-leading order in 1/N is
asymptotically free IR flow at small g n-
creases g.

e Consequently IR flow decreases g for large g
and there must therefore be at least one zero

B = 0 for some finite g.  QED.
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GENERAL PREDICTIONS.
Consider embedding the standard model
gauge group according to:

SU(3) x SU(2) x U(1) C ® SU(Nd)

Each gauge group of the SM can lie entirely
in a SU(Nd;) or in a diagonal subgroup of a
number thereof.

Only bifundamentals (including adjoints) are
possible. This implies no (8,2), etc. A con-
formality restriction which is new and satisfied
in Nature!

No U(1) factor can be conformal and so hyper-
charge is quantized through its incorporation in
a non-abelian gauge group. This is the “confor-
mality” equivalent to the GUT charge quanti-
zation condition in e.g. SU(5)!

Beyond these general consistencies, there are
predictions of new particles necessary to render
the theory conformal.

35



The minimal extra particle content comes
from putting each SM gauge group in one
SU(Nd;). Diagonal subgroup embedding in-
creases number of additional states.

Number of fundamentals plus Nd; times the
adjoints is 4Nd;. Number N3 of color triplets
and Ng of color octets satisfies:

N3+ 3Ng >4 x3=12
Since the SM has N3 = 6 we predict:
AN3+ 3Ng > 6

The additional states are at TeV if conformality
solves hierarchy. Similarly for color scalars:

Ms +3Mg > 6 x 3 = 18

The same exercise for SU(2) gives AN9+4N3 >
4 and AM>o + 2Ms > 11 respectively.
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GAUGE UNIFICATION

e Above TeV scale couplings will not run.

e Couplings of 3-2-1 related, not equal, at con-
formality scale.

e Embeddings in different numbers of the
equal-coupling SU(N) groups lead to the
TeV scale unification without logarithmic
running over large desert.
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Some illustrative examples of model building
using conformality:.

We need to specify an embedding I' C SU(4).

Consider Zy. It embeds as (—1,—1,—1,—1)
which 1s real and so leads to a non-chiral model.

Z3. One choice is 4 = (a, o, a, 1) which main-
tains N=1 supersymmetry. Otherwise we may
choose 4=(a, a, &, &%) but this is real.

Zy4. The only N = 0 complex embedding is
4=(1,1,1,%). The quiver is as shown on the next
transparency with the SU(N )4 gauge groups at
the corners, the fermions on the edges and the

scalars on the diagonals. The scalar content is
too tight to break to the SM.
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To obtain 3 chiral families in N/ = 0 from
abelian orbifolds, consider I' = Z), with succes-
sively increasing p = 2,3,4,5,6,7.... to access
the simplest model.

p=2 =1 real (require (4 # 4* for chirality)
p=3 Nochiral N =0

p=4 (i1 i1).
Scalars T insufficient for SSB SU (3)4 —

(321) 5
233)

p=5 (a,a,,d®) (o,0? 0 a
In both cases, scalars! insufficient for SSB.

p = 6 (oz,oz,oz,oz?)) (oz,oz,ozZ,oz2)

(a7 aga aga a?))
Scalars! insufficient for SSB SU (3)6 —

(321) g

f scalars, unlike in GUT's, are in prescibed rep-
resentations.
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When we arrive at p = 7 there are viable mod-
els. Actually three different quiver diagrams can

glve:

1) 3 chiral families.
2)Adequate scalars to spontaneously break

SU(3)" — SU(3) x SU(2) x U(1)

and

3) sinfyy = 3/13 = 0.231
The embeddings of I' = Z7 in SU(4) are:

TA.
7B.
7C.
7D.
TE.
7F.

(ar, o, v, )

(o, o, 02, 0%)*  C-H-H-H-W-H-W
(o, 02, 02, )

(a, 03,02, a%*  C-H-W-H-H-H-W
(a, 0, 0, a®)*  C-H-W-W-H-H-H
( 4

o2, o, o, o)

* have properties 1), 2) and 3).
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B 4=1(1,1,2,3) 6=(23,3,-3,-3,-2)

- ---- SCA

D 4=(1,3,55) 6=(1,1,3, -3, -1, -1)

w

B 4=(1,4,45) 6=(1,22 -2 -2 -1)

w

W
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The simplest abelian orbifold conformal ex-
tension of the standard model has SU(3)" —
SU(3)3 trinification — (321) g3y

In this case we have a9 and «aq related cor-
rectly for low energy. But as(M) ~ 0.07 sug-
gesting a conformal scale M > 10 TeV - too
high for the L.H.C.

However, non-abelian orbifolds may yield a
simpler model - generalizing a Left-Right sym-
metric (Pati-Salam) model rather than the S.M.
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NON-ABELIAN ORBIFOLDS

We consider all non-abelian discrete groups up
to order g < 32. There are exactly 45 such
ogroups. Because the gauge group arrived at is
®;SU(Nd;) we can arrive at SU(4) x SU(2) x
SU(2) by choosing N = 2.

To obtain chiral fermions one must have 4 #
4* This is not quite sufficient because for N = 2
4 cannot be pseudoreal.

This last requirement eliminates many of the
45 candidate groups. For example ()9, C
SU(2) has irreps of appropriate dimensions but
cannot sustain chiral fermions. because these
irreps are , like SU(2), pseudoreal.

This leaves 19 possible non-abelian I with g <
31, the lowest order being g = 16. This gives
only two families.

The smallest group which allows three chiral
familes has order ¢ = 24 so we now describe
this model.
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Using only Dy, Qopn, Sy and T

(T = tetrahedral S4/Z5) one already finds
32 of the 45 non-abelian discrete groups with
g < 31:

Dg — Sg

Dy, Q= Qq

10| Ds

12/ Dg, Qg, T

14| D~

16 Dg, Qg, ZQ X D4, ZQ X Q

18 l)g7 Z3 X D3

20| D19, Q10

22| D11

24| D12, Qo, Z2 X Dg, Zo X Qg, Zo X T
Zg X D4, Z3 X Q, Z4 X Dg, S4
26| D13

28| D14, Q4
30 D15, D5 X Zg, D3 X Z5

Co| O |09
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The remaining 13 of the 45 non-abelian dis-
crete groups with g < 31 are twisted products:

16 | Z9x Zg (two, excluding Dg), ZyxZ4
Z2>~<(ZQ X Z4) (two)

18 Z2>~<(Z3 X Zg)

20| Z4X Zs

21| Z3x 27

24| Z3xQ, ZsxZg, Z3xDy

27 29;<Z3, Z3>~<(Zg X Zg)
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Successtul g = 24 model is based on the group
I' = Z3 X Q
The fifteen irreps of I' are
1 1/ 1// 1/// 9

la, Va, 1"a, 1", 20,
104_1 1,04_1 1”04_1 1/”0&_1 205_1
The same model occurs for I' = Z3 x Dy. The
multiplication table (for either case) is shown on
the next transparency.
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1 7 1T 17 [ 17 9
11 2
L 1 TRBLARL 9
7717 {7 L 9
UABANLEEL 1 9
2 1 2 21 2] 2 1+ 1
1
la | la | Va | 1"a |1 200
Va | 'a | 1a (1Mo 1" 200
"o | 1"a 1| 1a | Va 200
"o 1" 1"a | a | 1a 200
200 | 2a | 2 | 2a | 2a | la+ 1«
"o+ 1"

etc.
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The general embedding of the required type
can be written:

4 = (la®™1, a2, 2a%)

The requirement that the 6 is real dictates
that

a1 + av = —2ag

It is therefore sufficient to consider for N' = 0
no surviving supersymmetry only the choice:

4=(1la, 1, 20)

[t remains to derive the chiral fermions and the
complex scalars using the procedures already
discussed (quiver diagrams).
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Q(orDy) x Z3 Model

VEVs for these scalars allow to break to the
following diagonal subgroups as the only
surviving gauge symmetries:

SU(2)1,2,3 — SU(2)
SU(2)56,7 — SU(2)
SU(4)19 — SU(4)

This spontaneous symmetry breaking leaves the
Pati-Salam type model:

SU(4) x SU(2) x SU(2)

with three chiral fermion generations

3[(4, 2, 1)+ (4, 1, 2)]
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GAUGE COUPLING UNIFICATION
(ABELIAN ORBIFOLD)

With the assumptions of grand unification and
low-energy supersymmetry, one achieved a suc-
cessful gauge unification. The LEP data gives
the couplings at the Z-pole as a3 = 0.118 &

0.003, ap = 0.0338 and a1 = %Cky = 0.0169
(where the errors on « 9 are less than 1%.

Using the RG equations
1 _ 1 b; I (M(;)
aj(Mg)  ai(Mg) 2r
and, for the MSSM the values b; = (63, 1,-3),
inputting ag3(My) leads to Mg = 2.4 X
1010 GeV and the prediction that

sin? § = 0.231

in excellent agreement with experiment.

Indeed this success is the main reason for beliet
in these two assumptions of low-energy super-
symmetry and grand unification,
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If we note that, at the Z-pole, the ratio an /) =~
2 as pointed out first in

PHF, Phys. Rev. D60, 085004 (1999)

we can reproduce the correct gauge unification.
Specifically for the abelian orbifold with I' = Z~
and NV = 3 it is natural to accommodate one
SU(3) factor as SU(3) .10 and SU(2)7, in a
diagonal subgroup of two SU (3) factors. Finally
U(1) is in a diagonal subgroup of four SU(3)
tfactors.

This gives the appropriate ratio betwen aq 9 and
consequently

sin? § = i 3/5
a9 + oy 2—|—3/5

= 3/13 = 0.231

There is a small correction for the running be-
tween M and the TeV scale, but this is com-
pensated by the two-loop correction and the
agreement remains as good as for SUSY-GUTs.
This is strong encouragenment for the confor-
mality approach.
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GAUGE COUPLING UNIFICATION
(NON-ABELIAN ORBIFOLD)

Here we summarize the analysis in:

PHEF, RN Mohapatra and S Suh, hep-
ph/0104211

This uses a unification at the TeV scale based
on SU(4)x SU(2); x SU(2) p rather than the
abelian case which uses trinification SU(3)3.

The orbifold employs I' = Z3 x Dy4. This dis-
crete group has three 2-dimensional irrpes and
twelve 1-dimensional ones.

The group D, consists of eight rotations which
leave a square invariant: two of the rota-
tions are flips about two lines that bisect the
square and the other four are rotations through
m/2,m, 37 /2 and 27 about the perpendicular to
the plane of the square.

The low energy group is thus SU(4)° x

SU(2)*,
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We embed the SU(4) in r of the SU(4)
ogroups where R = lor2 because r = 3 leads
to loss of chirality.

SU(2)r g are embedded respectively in p, g
SU(2) groups where p + g = 12.

Since p, q are integers it is not obvious a prior:
that the value of sin? # can be acceptable.

The values of the couplings at the conformality
scale are:

The hypercharge coupling is related by

2 3
—1 —1 —1
o1 = 50440 T gO‘ZR
Defining y = In(Mj;/M ) we then find
— (19/12

P+ q+ %7“ + (11/6m)yaq;
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Here

7
—1 —1
ag (Mz) =2ra; — %y

Using these formulae and ag(My) = 0.12 we
find
sin0(My) ~ 0.23 forp =4 and r = 2.

The conformality scale is here taken as M7 ~
100 TeV, the lower limit necessary to avoid too
high a branching ratio for K; — pte™.

It 1s highly non-trivial that the gauge coupligs
unify correctly.
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GAUGE UNIFICATION

The successful derivation of sin?fy =~ 0.23
from both the abelian orbifold (based on
333 unification) and the non-abelian manifold
(based on 422 unification) is strong support for
the conformality approach.

More detailed phenomenological study of the
conformality idea is merited.
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STRONG-ELECTROWEAK
UNIFICATION

was proposed even before the firm establishment
of the standard electroweak theory in the early
1970s. Minimal SU(5), both with and without
supersymmetry, is ruled out. Such GUTs in-
volve a scale ~ 1010 GeV and a GUT hierarchy.

Compactifying IIB on AdSs x S°/T" leads to
candidate semi-simple unification gauge groups.

The following theory has both a bottom-up and
a top-down component and leads to several in-
teresting features. Let us begin with bottom-up.
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In the SM first consider the electroweak angle
sin?0(u). At p = My, its value is measured as
0.231 and with increasing p it goes through 1/4
at u ~ 4 TeV.

We may consider also the ratio as(p)/cs(p)
which is above 3 at y = M 7, decreases through

3 at u ~ 400 GeV and 2 at p >~ 140 TeV. It is
5/2 at exceptionally close to where sin® @ = 1/4.

We take this numerology as a hint that in a
trinification SU(3) x SU(3) x SU(3) g the
couplings are in the ratio 5 :: 2 :: 2 at u = 4TeV

This can be achieved by embedding the 333-
model in SU(3)'? with the C, W, H groups di-
agonaly embedded in respectively 2, 5, 5 of the
SU(3)’s. Let us now consider top-down.
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Taking as orbifold S°/Zj5 with embedding
of Zi9 in the SU(4) R-parity specified by 4
= o1, a2 43, aA4) and A, = (1,2,3,6).

This accommodates the scalars necessary to
spontaneously break to the SM. This theory
thus predicts TWO numbers: sin’0(My) and
ac(Myz) whereas usual GUTs predict only
ONE of these.

As a bonus, the dodecagonal quiver predicts

three chiral families (see next transparency).
Also there is no GUT hierarchy.
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A, =(1,2,3,6)

SU(3)O X SU(3)H X SU(3)H
5(3,3,1) +2(3,3,1)
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SUMMARY

e Strong-Electroweak Unification at About 4
TeV:

e Predicts two numbers (sin’f, ag) whereas
SusyGUTs predict only one.

e Predicts three families.

e Ameliorates GUT /weak hierarchy.
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Classification of abelian quiver gauge theories

We consider the compactification of the type-
[IB superstring on the orbifold AdSs x S°/T
where I' is an abelian group I' = Z), of order p
with elements exp (271A/p), 0 < A< (p—1).

The resultant quiver gauge theory has N
residual supersymmetries with N' = 2,1, 0 de-
pending on the details of the embedding of I' in
the SU (4) group which is the isotropy of the S°.
This embedding is specified by the four integers
Am,1 <m < 4 with

YmAm = 0(modp) (2)
which characterize the transformation of the
components of the defining representation of

SU(4).
We

are here interested in the non-supersymmetric
case N = 0 which occurs if and only if all four
Ay, are non-vanishing.
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The gauge group is U(N)P. The fermions are
all in the bitundamental representations

ym ZH’(N Njiia,) (3)

which are manifestly non-supersymmetric be-
cause no fermions are in adjoint representations
of the gauge group. Scalars appear in represen-
tations

Z Z (N N a;) (4)
in which the six mtegers (a;, —a;) characterize
the transtformation of the antisymmetric second-
rank tensor representation of SU(4). The a; are
given by a; = (A9 + A3),a9 = (A3+ A1), a3 =
(A1 + Ag)

It is possible for one or more of the a; to van-
ish in which case the corresponding scalar rep-
resentation in the summation in Eq.(4) is to be
interpreted as an adjoint representation of one
particular U(N);. One may therefore have zero,
two, four or all six of the scalar representations,
in Eq.(4), in such adjoints.
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For the lowest tew orders of the group I', the
members of the infinite class of N = 0 abelian
quiver gauge theories are tabulated below:
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The Table continues to infinity but we stop at

p=71:

chi

N N N N N N

scalar

< F AN AN O OO O oo o

scalar
bifunds. | adjoints | fermi

AN AN FFH O O O O O O O

aj
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N N e e e e e T N N NS
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Note that there is one model with all scalars
in adjoints for each even value of p (see Model
Nos 1,3,12). For general even p the embedding
is A = (5,5,5,5). This series is the complete
list of N =0 behan quivers with all scalars in
adjoints.

To be of more phenomenolgical interest the
model should contain chiral fermions. This re-
quires that the embedding be complex: A, #
— Ay, (mod p). It will now be shown that for
the presence of chiral fermions all scalars must
be in bifundamentals.

The proof of this assertion follows by assuming
the contrary, that there is at least one adjoint
arising from, say, a; = 0. Therefore A3 = —As
(mod p). But then it follows from Eq.(2) that
A} = —A4 (mod p). The fundamental repre-
sentation of SU(4) is thus real and fermions are
non-chirall.

I This is almost obvious but for a complete justification, see Frampton & Kephart (2004)
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It follows that:

In an N =0 quiver gauge theory,
chiral fermions are present

iof and only if all scalars

are in bifundamental representaions.
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