Understanding Top and Its Backgrounds Maximizing the Chances of Finding New Physics in Run2

Stephen Mrenna

Computing Division Fermilab and MCTP University of Michigan

Top Quark Symposium 2005

Finding Physics In Run2

New Physics Algorithm (NPA)

- Take data
- 2 Test, validate tools
- Oivide data into boxes based on observed objects "e"," jet", " γ"," b-jet",...
- Make H_T , m_{ij} distributions
- S Rank according to level of discrepancy

(Observed-Expected)²/ σ^2 (Statistical, Tools)

 Focus Person-Power until discrepancy drops Improve tools, analysis, etc.

Iterate

Quaero, Sleuth, etc. (Knuteson)

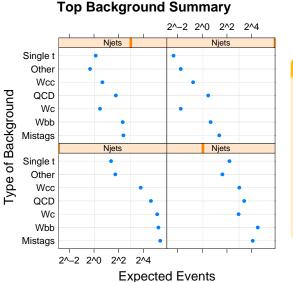
- In practice, analyses are done on specific channels
 - Specific question and answer, suitable for a student, etc.
 - Allows experimentalists to concentrate on what they want
- Top quark analyses are the closest thing we have to the NPA

ASSERTION

Understanding Top *backgrounds* and Top *production* is important to maximizing the New Physics potential of the Tevatron

PROOF

Listen to the talk!


Compromise

- Signature Wbb + X is common to unconfirmed Standard Model processes and many new physics processes
 X ⇒ many boxes
- we "know" that Standard Model top is there, thus we can study Not-Top

 $\mathsf{Top} \equiv \mathsf{Data} - \mathsf{Not}\mathsf{-}\mathsf{Top}$

- Claim: understanding Not-Top is more important than understanding Top itself
 - Not-Top challenges our tools
 - Better tools = more challenging questions

Complicated Structure $t\bar{t}$ contamination in Njets=3,4 (1.0,1,3) work on Mistags, Wbb, QCD QCD, Mistags reducible trust basic properties of B,D hadron decays, e.g. K mesons

Method 2

Monte Carlo ratio R = (W + b - jets)/(W + jets)

Measure W + jets (no b-tag)

 $data(W+b-jets) = R \times data(W+jets)$

Wcj/Wbb from Monte Carlo

Compare to predictions from MCFM

Campbell & Ellis (see also Campbell & Huston)

MLM Method

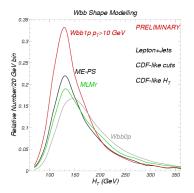
Parton shower and hadronization are essential for studying b-jets

- Parton shower W+Npartons but reject emissions that are too hard
- Build up *inclusive* or *exclusive* samples
- *R* supplemented by phenomenological factor 1.5

イロト イポト イヨト イヨト

 $\delta R/R \sim 25-30\%$

Graph	Cross Sect(fb)		
Sum (Wbb)	8.934		
Sum (Wjj)	1061.627		
ug→e ⁺ vedg	327.810		
$udx \rightarrow e^+vegg$	257.060		
$gdx \rightarrow e^+veuxg$	137.300		
$dxg \rightarrow e^+ veuxg$	48.591		
uux→e ⁺ veuxd	47.425		
$udx \rightarrow e^+veddx$	36.644		
$gu \rightarrow e^+ vedg$	34.445		
udx→e ⁺ veuux	29.816		


 $R \times 1.5 = 1.3\%$ (MLM = 1.4%) $\langle R \rangle$ roughly the same Many different topologies Dominant ones not $q\bar{q}$ $P_{qq}(z) = \frac{1}{2}(z^2 + (1 - z)^2)$ Different topologies parton shower and hadronize differently

Many effects have to be modelled well to have a reliable prediction

イロト イヨト イヨト イヨト

Matrix Element-Parton Shower Matching SM, PR JHEP 0405:040,2004

Testing Different Predictions

- Matching scheme needed to make inclusive predictions with hard emissions
- Pseudoshower Method (ME-PS) reweights matrix elements to look like parton showers where they should. Motivated by Catani et al., but more flexible and tuned to Pythia, Herwig, etc.

Is getting δm_t to 1 GeV our highest priority?

- No. But the error matters.
- When do we understand Top?
- When we understand:
 - the Underlying Event
 - uncertainties from ISR/FSR
 - γ-jet balancing jet energy scale out-of-cone

Inadequate tools mask NP

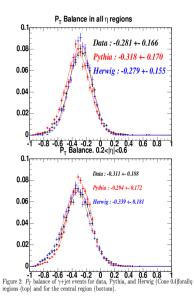
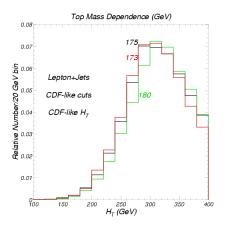



Image: A math a math

Why we need to know m_t

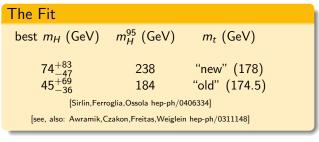
- $t\bar{t}$ is the background to other things
- σ alone is not enough
- *m_t* induces a shift in kinematic distributions

Image: A match a ma

- We want to extrapolate out of the top region to find NP
- Normalizing to X% in a big box does not extrapolate into a smaller one

Sac

Experimentalist's Testimonial


- What we hear all the time is that having a precise top mass measurement might be the *only* thing we will be able to do at the Tevatron in the search for the Higgs. That is, only constraining the Higgs mass.
- How precise do we need to measure it to help with the Higgs search at the Tevatron?
- If the mass is low [···] we might be able to find the Higgs at the Tevatron.
- If it is high, it would be out of reach for us.
- So the precision needed pretty much depends on the central value.

$m_t, m_W, \ln(m_H)$

The Formula

$$M_W^0 - M_W - .5 \frac{\Delta \alpha_h}{.0280} + .5 (\frac{m_t}{175})^2 - .0085 \frac{\alpha_s}{.118} + c$$

= ln(m_H/100)^{.06} + (ln(m_H/100)^{.09})²

Fighting for a logarithmic limit is hard work!

Stephen Mrenna (FNAL)

▲ロト ▲圖 ト ▲ 画 ト ▲ 画 ト の Q @

95% Confidence Level Expected/Measured Upper Limits (after final selections, with systematics, using Bayesian statistics)

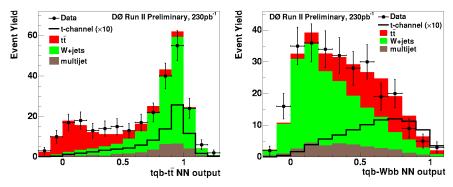
(, ,	,	0 ,	
		s-channel	t-channel	
Cut-Based	Electron	11.4/10.8	15.1/17.5	
	Muon	13.0/15.2	18.1/13.0	
	Combined	9.8/10.6	12.4/11.3	
Decision Trees	Electron	6.9/7.9	9.3/13.8	
	Muon	7.3/14.8	10.9/7.9	
	Combined	4.5/8.3	6.4/8.1	
Neural Networks	Electron	7.0/7.3	8.8/7.5	
	Muon	7.0/8.7	9.5/7.4	
	Combined	4.5/6.4	5.8/5.0	

イロト イポト イヨト イヨ

Single Top

New Physics Warm-Up

- current state of single-Top is where we will be at the LHC with a few quality fb⁻¹
- the size of other NP signals
- it is a playground for new analysis techniques
- it challenges our tools


Not specific to NN analyses: but they may be more sensitive to them

Many Kinematic Variables

	Signal-l	Backg	round F	airs
	tb		tqi	
	Wbb	tī	Wbb	tĒ
Individual object kinematics				
$p_T(\text{jet1}_{tagged})$	\checkmark	\checkmark	\checkmark	_
$p_T(jet1_{untagged})$	<u> </u>	_	V	
$p_T(\text{jet2}_{untagged})$	_	—	_	
$p_T(\text{jet1}_{nonbest})$	\checkmark	\checkmark	_	_
$p_T(\text{jet2}_{nonbest})$	\checkmark	\checkmark	_	_
Global event kinematics				
M_T (jet1, jet2)	\checkmark	—	_	_
p_T (jet1, jet2)	√.	_	√.	_
M(alljets)	\checkmark		√.	\checkmark
$H_T(\text{alljets})$	_	_	\sim	> >>>>> >
$M(alljets - jetl_{tagged})$	_	_	_	√.
$H(alljets - jet1_{tagged})$	_	\checkmark	_	√,
$H_T(alljets - jetl_{tagged})$	_	_	_	√
$p_T(alljets - jet1_{tagged})$	_	√_	_	
$M(\text{alljets} - \text{jet}_{best})$	—	√.	_	_
$H(alljets - jet_{best})$	_	√	_	_
$H_T(\text{alljets} - \text{jet}_{best})$		_√,		_
$M(top_{tagged}) = M(W, jetl_{tagged})$	√.	\checkmark	\checkmark	
$M(top_{best}) = M(W, jet_{best})$	\checkmark	_		_
$\sqrt{\hat{s}}$	\checkmark	_	\checkmark	\checkmark
Angular variables	,		,	
$\Delta R(\text{jet1}, \text{jet2})$	\checkmark	—	√,	_
$Q(\text{lepton}) \times \eta(\text{jet1}_{\text{untagged}})$		-	\checkmark	
$\cos(\text{lepton}, Q(\text{lepton}) \times z)_{top_{best}}$	\checkmark	_		_
$\cos(\text{lepton}, \text{jet1}_{untagged})_{top_{tagged}}$	_	-	√	_
cos(alljets, jet1 _{tagged}) _{alljets}	_	_	\checkmark	
cos(alljets, jet _{nonbest}) _{all jets}	_		_	_

Image: A math a math

Network Outputs

- How do we convince ourselves of a signal?
- How can we improve upon the search?

Trusting/Improving the NN Result

- Now, R=Wbb/Wjj taken from MCFM (25% uncertainty)
 - Which distributions are the most important for testing this prediction?
 - Is there a kinematic difference between the different components?
 - Can we discriminate Wbb, Wjj and Wcj?
- Are we modelling $t\bar{t}$ adequately?
- How would Quaero do here (see Runl)?
- If the kinematics and composition of the Standard Model are understood, then a more generic $Wb\bar{b} + X$ search is possible

Final Words

What Experimentalists Should Do

- prepare for a long (and fruitful) Run2
- re-evaluate what the Tevatron can do well before the LHC

make the case to the funding agencies!

• don't listen to theorists!

i.e, don't *NOT* do an analysis because of a theoretical prediction

- Keep asking questions about Top and Not-Top
- Repeatedly ask:

How can I maximize the New Physics Potential of Run2?

< □ > < ---->