Tilings, Dimers, and Quiver Gauge Theories

Amihay Hanany
Great Lakes Strings Conference

Thanks to:

Benvenuti, Franco, Kazakopoulos, Kennaway, Martelli, Sparks, Uranga, Vegh, Wecht

Central Question

- What is the gauge theory living on a D3 brane that probes a non-compact singular CY manifold?
- The construction we will see today solves this long standing problem for the case of toric CY singularities

Motivation for study

- Get information on $\mathcal{N}=1$ supersymmetric gauge theories - look close to real world
- Generically theories one studies are chiral - as in real world..
- More examples of SCFTs in 4 dimensions
- Get information on string backgrounds using D brane probes - what is a D brane?

Periodic bipartite tiling

Tiling - Quiver dictionary

- 2n sided face - U(N) Gauge group with nN flavors
- Edge - A bi-fundamental chiral multiplet charged under the two gauge groups corresponding to the faces it separates.
- k valent node - A k-th order interaction term in the superpotential

Z_{3} orbifold of C^{3}

$$
C Y_{6}=\text { conifold }
$$

quiver
brane tiling

$$
W=X_{12}^{(1)} X_{21}^{(1)} X_{12}^{(2)} X_{21}^{(2)}-X_{12}^{(1)} X_{21}^{(2)} X_{12}^{(2)} X_{21}^{(1)}
$$

Example: Conifold

Comments

- Arrows are oriented in an alternating fashion
- Graph is bi-partite: Nodes alternate between clockwise (white) and counterclockwise (black) orientations of arrows
- black (white) nodes connected to white (black) only

Comments

- odd sided faces are forbidden by anomaly cancellation condition
- white nodes with + sign in the superpotential
- black nodes with - sign in the superpotential
- These rules define a unique Lagrangian

Logical flow chart

Tiling for $\mathrm{F}_{0}\left(\mathrm{P}^{1} \times \mathrm{P}^{1}\right)$

(2,

Periodic Quiver for Fo

Logical flow chart

Brane tiling	Gauge theory
$F:$ number of faces	$N_{g}:$ number of gauge groups
$E:$ number of edges	$N_{f}:$ number of fields
$N:$ number of nodes	$N_{W}:$ number of superpotential terms

$$
N_{g}+N_{W}-N_{f}=0 .
$$

Đuler's formula

Dimers

- and now for "Dimer" techniques
- Dimer - a line connecting 2 nodes
- Perfect matching - a collection of dimers such that every node is covered precisely once
- Adjacency matrix between white \&e black nodes - Kasteleyn matrix

Perfect matchings SPP

Combinatorial Problem

- Given a Tiling, how many perfect matchings can one write down?
- Solved by writing the Adjacency (Kasteleyn) Matrix

Example: Del Pezzo 3, Model I

$$
K=\left(\begin{array}{c|ccc}
& 2 & 4 & 6 \\
\hline 1 & 1+w & 1-z w & 1+z \\
3 & 1 & -1 & -w^{-1} \\
5 & -z^{-1} & -1 & 1
\end{array}\right)
$$

Kasteleyn matrix

R. Kenyon

$$
P(z, w)=\operatorname{det} K
$$

$$
P(z, w)=w^{-1} z^{-1}-z^{-1}-w^{-1}-6-w-z+w z .
$$

Toric diagram of dP3I

Perfect matching Y^{32}

Perfect matching Y^{32} II

Logical flow chart

Moduli Space of Vacua

- All quiver theories arising from periodic bipartite tilings have toric noncompact CY as their moduli space of vacua
- Computed using the Kasteleyn matrix:
- Adjacency matrix between white and black nodes
- det K gives a convex polygon on Rd lattice

homology from toric diagram

- Given toric diagram set
- I = \# internal nodes, $\mathrm{E}=$ \# external nodes
- \#4 cycles = I
- \#2 cycles = I + ษ - 3
- 2 Area = 2I + E - 2 (Pick's Theorem)
- \# Gauge Groups = \#4 + \#2 + \#0 = 2 Area

Bonus: multiplicities

- The coefficients of $P(z, w)$ are integers and are the multiplicities of the linear sigma model fields used to define the CY as a toric variety

Orbifolds

- Here we report on some interesting aspect for orbifolds of the type
- C^{3} / Z_{n} or $C^{3} /\left(Z_{n} * Z_{m}\right)$
- Multiplicities of toric diagrams give a very rich combinatorial structure and sheds new light on orbifolds
- interesting from a mathematical point of view and physical point of view.

Multiplicities of Toric Diagrams

$$
\left.\begin{array}{rl}
\mathbb{C}^{3} /\left(\mathbb{Z}_{3} \times \mathbb{Z}_{3}\right): & {\left[\begin{array}{cccc}
1 & -3 & 3 & -1 \\
-3 & -21 & -3 \\
3 & -3 & \\
-1 &
\end{array}\right] \mathbb{C}^{3} /\left(\mathbb{Z}_{4} \times \mathbb{Z}_{4}\right):}
\end{array}\right]\left[\begin{array}{cccc}
1 & -4 & 6 & -4 \\
-4 & -124 & -124 & -4 \\
6 & -124 & 6 & \\
-4 & -4 & \\
1 &
\end{array}\right]
$$

orbifold examples

$C^{3} / Z_{4} \times Z_{4}$ with 2 points removed

$$
\begin{array}{llll}
{\left[\begin{array}{cccc}
1 & -3 & 3 & -1 \\
-3 & -65 & -43 & -1 \\
3 & -51 & 2 & \\
-1 & -1 &
\end{array}\right]} & {\left[\begin{array}{cccc}
1 & -3 & 3 & -1 \\
-3 & -71 & -53 & -1 \\
3 & -45 & 2 & \\
-1 & -1 &
\end{array}\right]} & {\left[\begin{array}{cccc}
1 & -3 & 3 & -1 \\
-3 & -81 & -59 & -1 \\
3 & -59 & 2 & \\
-1 & -1 &
\end{array}\right]} \\
{\left[\begin{array}{cccc}
1 & -3 & 3 & -1 \\
-3 & -65 & -51 & -1 \\
3 & -43 & 2 & \\
-1 & -1 &
\end{array}\right]} & {\left[\begin{array}{cccc}
1 & -3 & 3 & -1 \\
-3 & -71 & -45 & -1 \\
3 & -53 & 2 \\
-1 & -1 &
\end{array}\right]} & {\left[\begin{array}{cccc}
1 & -3 & 3 & -1 \\
-3 & -73 & -43 & -1 \\
3 & -43 & 2 \\
-1 & -1 &
\end{array}\right]}
\end{array}
$$

orbifold formulae

$$
\begin{array}{rr}
\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(\lambda z_{1}, z_{2}, \lambda^{-1} z_{3}\right), & \lambda^{n}=1 \\
\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(z_{1}, \omega z_{2}, \omega^{-1} z_{3}\right), & \omega^{m}=1
\end{array}
$$

$$
P_{n, m}(z, w)=\prod_{i=0}^{n-1} \prod_{j=0}^{m-1} P\left(\lambda^{i} z^{1 / n}, \omega^{j} w^{1 / m}\right)
$$

- $P(z, w)=l+z+w$
- Z_{n} action: (1,a,-1-a)
- $P_{n}(z, w)$ is Resultant t_{x} of $x^{n}+z \& x^{a+1}+x^{a}+w$

$$
P_{n}(z, w)=\prod_{i=0}^{n-1} P\left(\lambda^{a i} w^{a / n} z^{(n-a) / n}, \lambda^{(a+1) i} w^{(a+1) / n} z^{(n-a-1) / n}\right)
$$

Seiberg Duality

Integrating out massive fields

$$
\begin{array}{cc}
\sum_{i \in \text { edges around node }} R_{i}=2 & \text { for each node } \\
\sum_{i \in \text { edges around face }}\left(1-R_{i}\right)=2 & \text { for each face }
\end{array}
$$

for each node
$i \in e d g e s$ around node
$\sum_{i \in \text { edges around face }}\left(\pi R_{i}\right)=(\#$ edges -2$) \pi \quad$ for each face

IR fixed point

Isoradial embed. dP1

dP2 II

dP3 I

SPP tiling

Zig-Zag path (dPl)

properties of zig-zag paths

- each edge has precisely two paths going through it
- each path corresponds to an external leg in the (p, q) web dual to the toric diagram
- important for computing Ru charges \&e a-maximization

Conclusions

- Periodic tilings of 2d plane - N=1 SCFT's
- compute properties of quiver gauge theories using dimer techniques
- Solved a long standing problem computing superpotetials for D3 brans probing singular CY's
- Construct infinite families of quiver gauge theories ($\mathrm{Y}^{\mathrm{p}, \mathrm{q}} \mathrm{L}^{\mathrm{a}, \mathrm{b}, \mathrm{c}} \ldots$)

