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Central Question

e What is the gauge theory living on a D3
brane that probes a non-compact singular
CY manifold?

e The construction we will see today solves
this long standing problem for the case of
toric CY singularities




Motivation for study

e (et information on N=1 supersymmetric
gauge theories - look close to real world

e Generically theories one studies are chiral
- as in real world..

e More examples of SCFTs in 4 dimensions

e Get information on string backgrounds
using D brane probes - what is a D brane?




Periodic bipartite tiling



Tiling - Quiver dictionary

e 2n sided face - U(N) Gauge group with nN
flavors

e Fdge - A bi-fundamental chiral multiplet
charged under the two gausge groups
corresponding to the faces it separates.

e k valent node - A k-th order interaction
term in the superpotential



7z orbifold of C?



C'Yy = conifold

g W= XX XX - X XG) X X!
brane tiling

Example: Conifold



Comments

e Arrows are oriented in an alternating
fashion

e Graph is bi-partite: Nodes alternate
between clockwise (white) and
counterclockwise (black) orientations of
arrows

e black (white) nodes connected to white
(black) only



Comments

odd sided faces are forbidden by anomaly
cancellation condition

white nodes with + sign in the
superpotential

black nodes with - sign in the
superpotential

These rules define a unique Lagrangian
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Tiling for Fo (P*XP')



6,10
Quiver

Periodic Quiver for Fo
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Brane tiling Gauge theory
F': number of faces
E: mumber of edges Ne: number of fields

N: number of nodes -» number of superpotential terms

.'ﬂ'lnrg -+ Jﬂ\r1.1.-' — f"'r"_lr = (.

Euler’s formula
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Dimers

and now for “Dimer” techniques

Dimer - a line connecting £ nodes

Perfect matching - a collection of dimers
such that every node is covered precisely
once

Adjacency matrix between white & black
nodes - Kasteleyn matrix
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Perfect matchings SPP
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Combinatorial Problem

e Given a Tiling, how many perfect
matchings can one write down®

e Solved by writing the Adjacency
(Kasteleyn) Matrix
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Toric diagram of dPAI
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Moduli Space of Vacua

e All quiver theories arising from periodic
bipartite tilings hawve toric noncompact CY
as their moduli space of vacua

e Computed using the Kasteleyn matrix:

e Adjacency matrix between white and
black nodes

e det K gives a convex polygon on 2d lattice
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homology from toric
diagram

Given toric diagram set

I = # internal nodes, E = # external nodes

4 cycles =1

2cycles=1+E-3
& Area =2l + B - 2 (Pick’s Theorem)

Gauge Groups = #4 + #2 + #0 = 2 Area

_R5



Bonus: multiplicities

e The coefficients of P(z,w) are integers and
are the multiplicities of the linear si€ma.
model fields used to define the CY as a

toric variety

R0



Orbifolds

Here we report on some interesting aspect
for orbifolds of the type

C3/Zn or C3/(Zn *Zm)

Multiplicities of toric diagrams give a very
rich combinatorial structure and sheds
new light on orbifolds

interesting from a mathematical point of
view and physical point of view.

_7



Multiplicities of Toric
Diagrams
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orbifold examples
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C3/Z4XZ4 With 8 points

removed
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orbifold formulae

e P(z,w)=1+z+wW
e /Zn action: (l,a,-1-a)

e P, (z,w) is Resultantx of x™+z & x2*1+x3+W
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Seiberg Duality




Integrating out massive fields



for each node
icedges
- (1-R;)=2 for each face

i
icedges around face

(TR;) =2 for each node

LA
around node

Jr

(nRy) = (#edges —2)

IR fixed point
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Isoradial embed. dP1
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SPP tiling
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(0,1)+(1,1)

Z18-Zag path (dP1)



properties of zig-zag paths

e cach edge has precisely two paths going

through it

e cach path corresponds to a:
in the (p,q) web dual to the

e important for computing R
a-maximization

N external leg

toric diagram

charges &



Conclusions

Periodic tilings of 2d plane - N=1 SCFT’s

compute properties of quiver gauge
theories using dimer techniques

Solved a long standing problem -
computing superpotetials for D3 brans
probing singular CY’s

Construct infinite families of quiver gauge
theories (YP:Q Lab.c )
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