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Motivation

Landscape

Many Vacua

e Enumerate vacua
Probability of each vacuum

Understand dynamics

Ergodic Evolution (Banks & Johnson hep-th/0512141)

Causal patch description of eternal inflation
A, >0 “ground” state, all others are fluctuations
Probability ~ Lifetime ~ Entropy
I' = 0 for A= 0 to stabilize A_. dS
but, I' # 0 (discontinuous) at A=0



What we did

Investigate CdL equations
e Consider singular “solutions”
* General properties
* Map “solution” space

I" continuous as A = 0
E> If I' =0, A =0 limit 1s stable

(See also Banks, Johnson, & Aguirre hep-th/0603107)



CdL Tunneling Review

Scalar coupled to gravity V(o)
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Lorentzian dynamics V. >0->dS
expanding bubble of true vacuum < v =0 => open FRW
V. <0 => big crunch



Equations of Motion

| P Particle
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Boundary Conditions ¢=0 — Continuous
at p =0 poles 5

2 — 1 => Smooth



Solutions - Noncompact

V< 0:
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R* topology, one pole at t =0

o = ¢, as t > o == BAdS (V< 0) or Flat (V= 0)

p>0 == E <

May not reach ¢, == False vac. stable



Solutions - Compact
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p crosses 0 at equator = E?1 (anti-friction)
Tunneling solution always exists

Multiple passes - P =0
p=2



Properties of “Solutions™

“Solution” - solve with (Vi, ¢,) ™= singular or regular

* Generically compact with singularity at t_ .

* ¢ = +© for singular “solutions” '/\ o
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e Across reg. compact “sol’n” AP =1 g
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<0 => ¢ — o, extra pass

e Across non-compact soln AP = ?

e Between ¢! and ¢.2 with AP # 0, reg. sol’n
W P bo” W > 168 50 Singular

“solution”



Solution space
No A=0 tunneling
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Solution space

A=0 tunneling
'
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Vi => 0 Limit
Stable V; =0 False Vacuum

No noncompact solution (by assumption)
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Vi => 0 Limit

Unstable Vi =0 False Vacuum

Noncompact solution exists (by assumption)
Limit discontinuous - hard to perturb
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Summary

- Smooth Vi = 0 limit
if I' => 0 = stable flat space

* Ergotic landscape doubtful

e “Solution” space - rich structure



