Black Hole Vacua

Jeremy Michelson
University of Kentucky

based on work with Andrew Chamblin
Motivation

- String Theory is supposed to solve quantum gravity problems
 - e.g. Black hole singularity?
• Fidkowski, Hubeny, Kleban and Shenker suggested using AdS/CFT

- Consider geodesics that bounce off singularity
- AdS/CFT relates this to correlators
Generalities

Consider

\[ds^2 = -f(r) dt^2 + \frac{dr^2}{f(r)} + r^2 d\Omega_{d-1}^2 \]

Where \(f(r) \)

- monotonically increasing function
- singular at \(r = 0 \)
- zero at \(r = r_+ > 0 \) [horizon]

Examples:

- Schwarzchild: \(f(r) = 1 - \frac{\omega_d M}{r^{d-2}} \)
- AdS-Schwarzchild: \(f(r) = \frac{r^2}{\ell^2} + 1 - \frac{\omega_d M}{r^{d-2}} \)
Technicalities:
Define tortoise coordinate:
\[r^* = \int_0^r \frac{dr'}{f(r')} + \frac{\pi i}{f'(r_+)} \]
Double null coordinates:
\[u = t - r^* \quad \quad v = t + r^* \]
Kruskal coordinates:
\[U = e^{-\frac{f'(r_+)}{2} u} \quad \quad V = e^{\frac{f'(r_+)}{2} v} \]
Kruskal coordinates ⇔ Penrose diagram:

- Schwarzshchild \((r^*(r = \infty) = \infty)\)
- BTZ black hole \((r^*(r = \infty) = 0)\)
- AdS\(_5\)-Schwarzshchild \((0 < r^*(\infty) < \infty)\)

* Which Penrose ⇔ asymptotics of \(r^*\)
Symmetries:

- $\frac{\partial}{\partial t}$ is timelike (in asymptotic regions) Killing vector

- S^{d-1} symmetries

 \[\frac{1}{2}(U + V) \]

 - $T \rightarrow -T$ (vertical reflection of Penrose)
 - inverts time (t), preserves S^{d-1}
 - fixed points at $T = 0$

 \[\frac{1}{2}(-U + V) \]

 - $Z \rightarrow -Z$ (horizontal reflection of Penrose)
 - inverts time, preserves S^{d-1}
 - fixed points at $Z = 0$

- antipodal map of S^{d-1} (not on the Penrose diagram)
 - does not affect time; symmetry of S^{d-1}
 - no fixed points
Antipodal Map

Consider combination

\[T \to -T, \ Z \to -Z, \ \text{antipodal map on} \ S^{d-1} \]

- acts freely
- preserves direction of time
- preserves (obvious) symmetries of the space-time
 - commutes with \(\frac{\partial}{\partial t} \)
 - commutes with \(S^{d-1} \) symmetries

Call this the **antipodal** map
Black Hole Vacua

- $J = R_T R_Z P \Rightarrow \mathbb{Z}_2$ “antipodal” map
 - Commutes with all symmetries

- Cf. de Sitter space:

- $\exists \mathbb{Z}_2$ antipodal map $X \to -X$ on covering space
 - Commutes with all symmetries
 - Can partially correlate point and antipodal point

 * \Rightarrow Mottola-Allen transformation
 * Defines one complex-parameter family of vacua:
 - α-Vacua
Consider a scalar field on this spacetime.

Can choose modes ϕ_n so that

$$\phi_n(x_A) \rightarrow \phi_n(x)^*$$

antipodal map:
- positive frequencies \leftrightarrow negative frequencies
- (Antipodal map includes time reversal)

Can Bogoliubov standard vacuum:

$$b_n = \cosh \alpha a_n - e^{-i\gamma} \sinh \alpha a_n^\dagger$$
$$b_n^\dagger = \cosh \alpha a_n^\dagger - e^{i\gamma} \sinh \alpha a_n$$

- One complex parameter family of vacua
- Preserve all (obvious) symmetries

No reason to choose one over another

-8
α Vacua

These are exactly like dS α-vacua
 ● including construction

But dS α-vacua are frowned upon:
 ● Causality problems
 ● Unphysical Poles
 ● Pinch Singularities
 ● Not Thermal

We need not have these problems!
Causality

α-vacua

- send in signal from south pole
- correlation propagates from north pole
 \Rightarrow Causality problems?

- Yes! Naïvely, lightcones only intersect on horizon, \textbf{but}

- dS gets taller (gravitational backreaction)

- \Rightarrow lightcones intersect!

But for \textbf{black holes},

- gravitational backreaction increases horizon size
- lightcones only intersect inside horizon

Leblond, Marolf, Myers
Unphysical Poles

Consider
\[\langle \phi(x_1)\phi(x_2)\phi(x_3) \rangle \sim \int dy G^F(x_1,y)G^F(x_2,y)G^F(x_3,y) \]

For α vacua, poles when \(y \) is on lightcone of point or antipodal point

- Divergences if, say, also \(x_2 \) on lightcone of \(x_3A \)
 - coincident poles
- Surprising if \(x_1, x_2, x_3 \) causally connected

But for black holes this requires one of \(x_1, x_2, x_3 \) to be inside horizon.
Pinch Singularities

\[\sim \int dx \int dy \, G_{\alpha \gamma}^F(x, y) G_{\alpha \gamma}^F(y, x), \]
\[\sim \ldots + \int dx \int dy \, \sinh^2 2\alpha \, G_0^F(x, y) G_0^F(y, x)^* + \ldots \]

Has both \(i\epsilon \) prescriptions

\[\Rightarrow \] can't evade singularity!

Change time-ordering prescription?

No! (In principle) calculate string loops (\textit{unlike} dS!)

\[\Rightarrow \] No pinch singularities
Thermality

In an α-vacuum

\[
\frac{P_{\alpha\gamma}(E_i \rightarrow E_j)}{P_{\alpha\gamma}(E_j \rightarrow E_i)} = \left| \frac{\cosh \alpha + \sinh \alpha e^{i\gamma e^{\beta \Delta E} \frac{\beta}{2}}}{\cosh \alpha + \sinh \alpha e^{i\gamma e^{-\beta \Delta E} \frac{\beta}{2}}} \right|^2 e^{-\beta \Delta E}.
\]

- Only thermal (temperature β) if $\alpha = 0$
- Contradicts detailed balance?

 \[- \text{i.e. } \rho(E_i)P(E_i \rightarrow E_j) \neq \rho(E_j)P(E_j \rightarrow E_i)\]

NO! Just means *nonequilibrium, steady state.*
Holography?

- For AdS-Schwarzschild, have AdS/CFT.
- Two boundaries \Rightarrow two CFTs
- Ordinary vacuum \Leftrightarrow Pure state of (doubled) CFT
 - Trace over CFT$_1$ \Rightarrow thermal state of CFT

For α-vacuum, Bogoliubov CFT:

\[
\begin{align*}
 b^\dagger_1 &= \cosh \alpha a^\dagger_1 - e^{i\gamma} \sinh \alpha a_2,
 \\
 b^\dagger_2 &= \cosh \alpha a^\dagger_2 - e^{i\gamma} \sinh \alpha a_1
\end{align*}
\]

Note "1" and "2" no longer bdy$_1$ and bdy$_2$.

$\text{Tr}_2 \Rightarrow$ nonthermal density matrix
Agrees with nonthermal formula on AdS side!

Sim. propagators \leftrightarrow correlation functions
Using AdS/CFT, compute $S = -\text{Tr} \rho \ln \rho$:

- **Entropy at low temperature:**

- **Entropy at high temperature:**
Conclusions

- Black holes have α-Vacua
 - Very general
 - For AdS-Schwarzschild, can use CFT as well
- Can avoid problems of dS α-Vacua
- Compute α-dependent entropy from CFT
 - What does it mean???