Recent AdS/CFT results for near-equilibrium strongly coupled thermal gauge theories

Andrei Starinets

Perimeter Institute for Theoretical Physics

Great Lakes Strings Conference Ann Arbor

March 31, 2006

 Viscosity-entropy ratio at non-zero chemical potential
Critical exponents for the shear viscosity from AdS/CFT
Thermal conductivity of N=4 SYM (Dam Son, A.S., hep-th/0601157)

Thermal spectral functions of N=4 SYM (Pavel Kovtun, A.S., hep-th/0602059)

Photon and dilepton production in strongly coupled plasma (Pavel Kovtun, A.S., to appear) AdS/CFT correspondence can be used for studies of the near-equilibrium regime of strongly coupled gauge theories

This is interesting, since this regime remains inaccessible for other non-perturbative methods such as the (direct) lattice simulations

The Lorentzian version of the AdS/CFT computes thermal correlation functions of a dual theory directly from gravity. This is all we need since the near-equilibrium properties then follow from the fluctuation-dissipation theorems.

In particular, transport coefficients of strongly coupled thermal gauge theories can be extracted from quasinormal spectrum of the dual gravity background

Transport (kinetic) coefficients

ζ

- Shear viscosity η
- Bulk viscosity
- Charge diffusion constant D_Q
- Thermal conductivity κ_T
- Electrical conductivity σ

What is known?

✓ Shear viscosity/entropy ratio: $\frac{\eta}{s} = \frac{1}{4\pi}$

• in the limit $g^2 N = \infty$ $N = \infty$

universally for a large class of theories

Bulk viscosity for non-conformal theories

$$\frac{\zeta}{\eta} = -\kappa \, \left(v_s^2 - \frac{1}{3} \right)$$

• in the limit $g^2 N = \infty$ $N = \infty$

model-dependent

R-charge diffusion constant for N=4 SYM: $D_R = \frac{1}{2\pi T}$

Shear viscosity in N = 4 SYM

Correction to $1/4\pi$: A.Buchel, J.Liu, A.S., hep-th/0406264

Shear viscosity at non-zero chemical potential

$\mathcal{N} = 4 \text{ SYM}$	Reissner-Nordstrom-AdS black hole
$q_i \in U(1)^3 \subset SO(6)_R$	with three R charges
$Z = \operatorname{tr} e^{-\beta H + \mu_i q_i}$	(Behrnd, Cvetic, Sabra, 1998)
We still have $\frac{\eta}{s} =$	J.Mas D.Son, A.S. 4π O.Saremi K.Maeda, M.Natsuume, T.Okamura

$$\eta = \pi N^2 T^3 \frac{m^2 (1 - \sqrt{1 - 4m^2} - m^2)^2}{(1 - \sqrt{1 - 4m^2})^3} \Big|_{1}^{1}$$

 $m\equiv \mu/2\pi T$

Thermal conductivity

Non-relativistic theory: $Q = -\kappa_T \nabla T$

Relativistic theory:

$$T^{0i} = -\kappa_T \left(\partial^i T - \frac{T}{\varepsilon + P} \partial^i P \right)$$

Kubo formula:

$$\kappa_T = -\frac{(\varepsilon + P)^2}{\rho^2 T} \lim_{\omega \to 0} \frac{1}{\omega} \operatorname{Im} G(\omega, 0)$$

In $\mathcal{N} = 4$ SYM with non-zero chemical potential μ :

$$\frac{\kappa_T \ \mu^2}{\eta \ T} = 8\pi^2$$

One can compare this with the Wiedemann-Franz law for the ratio of thermal to electric conductivity:

$$\frac{\kappa_T \ e^2}{\sigma \ T} = \pi^2/3$$

Spectral function and quasiparticles

 $\chi_{\mu\nu,\alpha\beta}(k) = \int d^4x \, e^{-ikx} \left\langle \left[T_{\mu\nu}(x) T_{\alpha\beta}(0) \right] \right\rangle$

A: scalar channel B: scalar channel - thermal part C: sound channel

Lattice test of the viscosity/entropy bound $\eta/s \ge 1/4\pi$?

A.Nakamura, S.Sakai, hep-lat/0510039

Photon and dilepton emission from strongly coupled YM plasma

Computing the emission rate

- 1. In N=4 SYM, gauge $U(1)_R \subset SU(4)_R$ with $\alpha_{em} \ll 1$
- 2. Cancel the anomaly by adding weakly interacting, non-thermal fermions

3. The emission rate is
$$\omega \frac{d\Gamma}{d^4x d^3q} = \frac{\alpha_{em} \eta^{\mu\nu}}{(2\pi)^2} \Pi_{\mu\nu}(\omega, q)$$

$$\Pi_{\mu\nu}(\omega, q) = \int d^4x e^{-i\omega t + iqx} \langle J_{\mu}(0) J_{\nu}(x) \rangle_T$$

4. The Wightman correlator is computed from gravity

Photoproduction rate

N=4 SYM ++

Outlook

 \succ How universal is η/s ? How useful are the N=4 spectral functions for thermal QCD lattice simulations? Can we get a meaningful comparison of photon and lepton production rates obtained using pQCD, lattice, AdS/CFT, **RHIC?**

The hydrodynamic regime Hierarchy of times (example)

What is viscosity?

Friction in Newton's equation:

 $\frac{d(mv_i)}{dt} + \gamma v_i = F_i$

Friction in Euler's equations

 $\frac{\partial(\rho v_i)}{\partial t} = -\frac{\partial}{\partial x^k} \left(P\delta_{ik} + \rho v_i v_k \right) + \frac{\partial}{\partial x^k} \sigma_{ik}^{fric}$

$$\begin{array}{c} \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet & \bullet & \bullet & \bullet & \bullet \\ \hline \bullet & \bullet \\ \hline \end{array}$$

$$\sigma_{ik}^{fric} \sim \partial v_i / \partial x^k \qquad \qquad \sigma_{ik}^{fric} \sim \partial v_i / \partial x^k + \partial v_k / \partial x^i$$
$$\sigma_{ik}^{fric} = \eta \left(\frac{\partial v_i}{\partial x^k} + \frac{\partial v_k}{\partial x^i} - \frac{2}{d} \delta_{ik} \frac{\partial v_l}{\partial x^l} \right) + \zeta \delta_{ik} \frac{\partial v_l}{\partial x^l} + \cdots$$

Viscosity of gases and liquids

Gases (Maxwell, 1867): $\eta \sim \rho \, \overline{v} \, l_{mfp} \sim \frac{m_o \overline{v}}{\sigma} \sim \frac{m_o^{1/2}}{\sigma} \sqrt{T}$ Viscosity of a gas is

- independent of pressure
- scales as square of temperature
- inversely proportional to cross-section

Liquids (Frenkel, 1926): $\eta \sim A(P,T) \exp \frac{W}{T}$

- W is the "activation energy"
- In practice, A and W are chosen to fit data

Computing transport coefficients from "first principles"

Fluctuation-dissipation theory (Callen, Welton, Green, Kubo)

Kubo formulae allows one to calculate transport coefficients from microscopic models

 $\eta = \lim_{\omega \to 0} \frac{1}{2\omega} \int dt \, d^3x e^{i\omega t} \langle \left[T_{xy}(t,x), T_{xy}(0,0) \right] \rangle$

In the regime described by a gravity dual the correlator can be computed using AdS/CFT

Universality of shear viscosity in the regime described by gravity duals

 $ds^{2} = f(w) \left(dx^{2} + dy^{2} \right) + g_{\mu\nu}(w) dw^{\mu} dw^{\nu}$

$$\eta = \lim_{\omega \to 0} \frac{1}{2\omega} \int dt \, dx e^{i\omega t} \langle \left[T_{xy}(t,x), T_{xy}(0,0) \right] \rangle$$

$$\sigma_{abs} = -\frac{16\pi G}{\omega} \operatorname{Im} G^{R}(\omega)$$

= $\frac{8\pi G}{\omega} \int dt \, dx e^{i\omega t} \langle \left[T_{xy}(t,x), T_{xy}(0,0) \right] \rangle$

 $\eta = \frac{\sigma_{abs}(0)}{16\pi G}$

Graviton's component h_y^x obeys equation for a minimally coupled massless scalar. But then $\sigma_{abs}(0) = A_H$.

Since the entropy (density) is $s = A_H/4G$ we get

$$\frac{\eta}{s} = \frac{1}{4\pi}$$

Three roads to universality of η/s

The absorption argument

D. Son, P. Kovtun, A.S., hep-th/0405231

Direct computation of the correlator in Kubo formula from AdS/CFT A.Buchel, hep-th/0408095

 "Membrane paradigm" general formula for diffusion coefficient + interpretation as lowest quasinormal frequency = pole of the shear mode correlator + Buchel-Liu theorem
P. Kovtun, D.Son, A.S., hep-th/0309213, A.S., to appear,
P.Kovtun, A.S., hep-th/0506184, A.Buchel, J.Liu, hep-th/0311175

A viscosity bound conjecture

$$\frac{\eta}{s} \ge \frac{\hbar}{4\pi k_B} \approx 6.08 \cdot 10^{-13} \, K \cdot s$$

P.Kovtun, D.Son, A.S., hep-th/0309213, hep-th/0405231

Hydrodynamics as an effective theory Thermodynamic equilibrium: $\langle T^{00} \rangle = \epsilon, \ \langle T^{0i} \rangle = 0$ $T^{ij} = P(\epsilon) \delta^{ij}$

Near-equilibrium: $T^{00} = \epsilon + \tilde{T}^{00}$ $T^{ij} = P\delta^{ij} + \left(\frac{\partial P}{\partial \epsilon}\tilde{T}^{00} + \tilde{T}^{ij}\right)$ $\tilde{T}^{ij} = -\frac{1}{\epsilon + P} \Big[\eta \left(\partial_i \tilde{T}^{0j} + \partial_j \tilde{T}^{0i} - \frac{2}{3} \delta^{ij} \partial_k \tilde{T}^{0k} \right) + \zeta \delta^{ij} \partial_k \tilde{T}^{0k} \Big] + \cdots$ $\partial_{\mu}T^{\mu\nu} = 0$ Eigenmodes of the system of equations Shear mode (transverse fluctuations of \tilde{T}^{0i}): $\omega = -\frac{i\eta}{c+P}q^2$ Sound mode: $\omega = v_s q - \frac{i}{2\epsilon + P} \left(\zeta + \frac{4}{3}\eta\right) q^2$ For CFT we have $\zeta = 0$ and $\epsilon = 3P$ $\longrightarrow v_s = 1/\sqrt{3}$

Two-point correlation function of stress-energy tensor

Field theory

Zero temperature:

Finite temperature:

$$\langle T_{\mu\nu}T_{\alpha\beta}\rangle_{T=0} = \prod_{\mu\nu,\alpha\beta} F(k^2) + Q_{\mu\nu,\alpha\beta} G(k^2)$$
$$\langle T_{\mu\nu}T_{\alpha\beta}\rangle_T = S^{(1)}_{\mu\nu,\alpha\beta} G_1(\omega,q) + S^{(2)}_{\mu\nu,\alpha\beta} G_2(\omega,q)$$
$$S^{(3)}_{\mu\nu,\alpha\beta} G_3(\omega,q) + S^{(4)}_{\mu\nu,\alpha\beta} G_4 + S^{(5)}_{\mu\nu,\alpha\beta} G_5$$

Dual gravity

- Five gauge-invariant combinations Z_1, Z_2, Z_3, Z_4, Z_5 of $h_{\mu\nu}$ and other fields determine G_1, G_2, G_3, G_4, G_5
- \succ Z_1, Z_2, Z_3, Z_4, Z_5 obey a system of coupled ODEs
- Their (quasinormal) spectrum determines singularities of the correlator

Classification of fluctuations and universality

 $ds^{2} = \frac{r^{2}}{R^{2}} \left(-f(r)dt^{2} + dx^{2} + dy^{2} + dz^{2} \right) + \frac{R^{2}}{r^{2}f} dR^{2}$

 $\delta g_{\mu\nu} \sim e^{-i\omega t + iqz} h_{\mu\nu}(r)$ O(2) symmetry in x-y plane

Shear channel: h_{tx} h_{zx} h_{ty} h_{zy} Z_1 Sound channel: h_{tt} h_{tz} h_{zz} $h_{xx} + h_{yy}$ Z_2 Scalar channel: h_{xy} $h_{xx} - h_{yy}$ Z_3

Other fluctuations (e.g. $\delta \varphi_1$, ... $\delta \varphi_n$) may affect sound channel But not the shear channel \implies universality of η/s Gauge-invariant variables for a gravity dual to a conformal theory

 $ds^{2} = a(r) \left(-f(r)dt^{2} + dx^{2} + dy^{2} + dz^{2} \right) + b(r)dr^{2}$ $h_{\mu\nu} \rightarrow h_{\mu\nu} - \nabla_{\mu}\xi_{\nu} - \nabla_{\nu}\xi_{\mu}$

Shear: $Z_1 = q H_{tx} + \omega H_{zx}$

Sound: $Z_2 = q^2 f H_{tt} + 2\omega q H_{tz} + \omega^2 H_{zz} + q^2 f \left(1 + \frac{af'}{a'f} - \frac{\omega^2}{q^2 f} \right) H$

Scalar: $Z_3 = H_{xy}$

 $H_{ij} = h_{ij}/a$ $h_{\mu\nu} \sim e^{-i\omega t + iqz}$ $H = (h_{xx} + h_{yy})/2a$

Bulk viscosity and the speed of sound in $\mathcal{N} = 2^*$ SYM

 $\mathcal{N} = 2^*$ is a "mass-deformed" $\mathcal{N} = 4$ (Pilch-Warner flow) > Finite-temperature version: A.Buchel, J.Liu, hep-th/0305064 > The metric is known explicitly for $m/T \ll 1$ > Speed of sound and bulk viscosity:

$$v_{s} = \frac{1}{\sqrt{3}} \left(1 - \frac{\left[\Gamma \left(\frac{3}{4} \right) \right]^{4}}{3\pi^{4}} \left(\frac{m_{f}}{T} \right)^{2} - \frac{1}{18\pi^{4}} \left(\frac{m_{b}}{T} \right)^{4} + \cdots \right)^{2} \right)$$
$$\frac{\zeta}{\eta} = \beta_{f}^{\Gamma} \frac{\left[\Gamma \left(\frac{3}{4} \right) \right]^{4}}{3\pi^{3}} \left(\frac{m_{f}}{T} \right)^{2} + \frac{\beta_{b}^{\Gamma}}{432\pi^{2}} \left(\frac{m_{b}}{T} \right)^{4} + \cdots$$
$$\frac{\zeta}{\eta} = -\kappa \left(v_{s}^{2} - \frac{1}{3} \right)$$

Heavy ion collisions: RHIC/LHC

QCD phase diagram

QCD deconfinement transition

Pressure in perturbative QCD

Figure from: U.Heinz, "Concepts of heavy-ion physics", hep-ph/0407360

Elliptic flow at RHIC

Effect of viscosity on elliptic flow

Conclusions

- AdS/CFT gives insights into physics of thermal gauge theories in the nonperturbative regime
- Generic hydrodynamic predictions can be used to check validity of AdS/CFT
- General algorithm exists to compute transport coefficients and the speed of sound in any gravity dual
- Model-independent statements can presumably be checked experimentally