TRANSPORT PROPERTIES OF

\[\mathcal{N} = 4 \] SYM AT FINITE COUPLING

Paolo Benincasa
(University of Western Ontario)

P.B., Alex Buchel - JHEP 06 01: 103, 2006 - [hep-th/0510041]
Aim of the Work

- Study of the hydrodynamics for SYM theory with leading correction in the inverse 't Hooft coupling
 - Shear diffusion constant
 - Speed of sound
 - Bulk viscosity
- Consistent picture of the α'-corrected sugra hydrodynamics
Supergravity Approximation

- Gauge/string correspondence provides an effective description of strongly coupled gauge theories in terms of supergravity black brane background

- Large-N $\mathcal{N} = 4$ $SU(N)$ SYM at large 't Hooft coupling \sim IIB-sugra in near-extremal black 3-brane background

- Hydrodynamics approximation: $\omega \to 0$, $q \to 0$, $\frac{\omega}{q} = \text{const}$

 ▶️ Shear viscosity η (Policastro, Son, Starinets - [hep-th/0104066], [hep-th/0205052]):

 $$\eta = \frac{\pi}{8} N^2 T^3$$

 ▶️ Speed of sound c_s and bulk viscosity ζ (Policastro, Son, Starinets - [hep-th/0210220]):

 $$c_s = \frac{1}{\sqrt{3}} \quad \zeta = 0$$
Leading α'-corrections (1)

10-dim type-IIB action with leading α'-corrections:

$$I = I_{sugra} + \frac{1}{16\pi G_{10}} \int d^{10}x \sqrt{-g} e^{-\frac{3}{2}\phi} W$$

with

$$\gamma = \frac{1}{8}\zeta(3)(\alpha')^3, \quad W \sim C^4$$

Important features:

- The entropy density differs from B.H. formula
- T_H, S, E, F are α'-corrected
- $R(S^5)$ not constant
Leading α'-corrections (2)

- Analisis of pertubations in the background geometry

- Shear channel (Buchel, Liu, Starinets - [hep-th/0406264]):

\[
\frac{\eta}{s} = \frac{1}{4\pi} \left(1 + 135\gamma + \mathcal{O}(\gamma^2) \right)
\]

- Sound channel:

\[
\omega = c_s q - i \frac{2}{3} \frac{q^2 \eta}{T s} \left(1 + \frac{3}{4} \zeta \right) \rightarrow \omega = c_s q - i \frac{\Gamma_s}{2\pi T} q^2 + \mathcal{O}(q^3)
\]

\[
c_s = \frac{1}{\sqrt{3}} + \mathcal{O}(\gamma^2) \quad \Gamma_s = \frac{1}{3} + 40\gamma + \mathcal{O}(\gamma^2)
\]

- Bulk viscosity:

\[
\zeta = \mathcal{O}(\gamma^2)
\]