Discrete Symmetries of Quiver Theories and Wrapped Branes
hep-th/0602094

B.A. Burrington, J. T. Liu, L.A. Pando Zayas

Department of Physics
University of Michigan

Great Lakes Strings
April Fool’s Day
Pattern first recognized in hep-th/9811048: (Gukov, Rangamani, Witten)

D3 on Orbifold 6D Backgrounds \rightarrow Quiver Gauge Theories
Orbifold \mathbb{Z}_n Backgrounds \rightarrow Cycles Valued in \mathbb{Z}_n
Branes may wrap these cycles.
Number Operators of Wrapped Branes have AdS/CFT Dual
Quiver Gauge Theories Have \mathbb{Z}_n symmetries
Discrete Symmetries \rightarrow NONCOMMUTATIVE
Pattern first recognized in hep-th/9811048: (Gukov, Rangamani, Witten)

D3 on Orbifold 6D Backgrounds \rightarrow Quiver Gauge Theories
Orbifold \mathbb{Z}_n Backgrounds \rightarrow Cycles Valued in \mathbb{Z}_n
Branes may wrap these cycles.
Number Operators of Wrapped Branes have AdS/CFT Dual
Quiver Gauge Theories Have \mathbb{Z}_n symmetries
Discrete Symmetries \rightarrow NONCOMMUTATIVE
Overview

Pattern first recognized in hep-th/9811048: (Gukov, Rangamani, Witten)

- D3 on Orbifold 6D Backgrounds \rightarrow Quiver Gauge Theories
- Orbifold \mathbb{Z}_n Backgrounds \rightarrow Cycles Valued in \mathbb{Z}_n

Branes may wrap these cycles.

Number Operators of Wrapped Branes have AdS/CFT Dual

Quiver Gauge Theories Have \mathbb{Z}_n symmetries

Discrete Symmetries \rightarrow NONCOMMUTATIVE
Pattern first recognized in hep-th/9811048: (Gukov, Rangamani, Witten)

D3 on Orbifold 6D Backgrounds \rightarrow Quiver Gauge Theories

Orbifold \mathbb{Z}_n Backgrounds \rightarrow Cycles Valued in \mathbb{Z}_n

Branes may wrap these cycles.

Number Operators of Wrapped Branes have AdS/CFT Dual

Quiver Gauge Theories Have \mathbb{Z}_n symmetries

Discrete Symmetries \rightarrow NONCOMMUTATIVE
Pattern first recognized in hep-th/9811048: (Gukov, Rangamani, Witten)

D3 on Orbifold 6D Backgrounds \(\rightarrow\) Quiver Gauge Theories

Orbifold \(\mathbb{Z}_n\) Backgrounds \(\rightarrow\) Cycles Valued in \(\mathbb{Z}_n\)

Branes may wrap these cycles.

Number Operators of Wrapped Branes have AdS/CFT Dual

Quiver Gauge Theories Have \(\mathbb{Z}_n\) symmetries

Discrete Symmetries \(\rightarrow\) NONCOMMUTATIVE
Pattern first recognized in hep-th/9811048: (Gukov, Rangamani, Witten)

D3 on Orbifold 6D Backgrounds → Quiver Gauge Theories
Orbifold \(\mathbb{Z}_n \) Backgrounds → Cycles Valued in \(\mathbb{Z}_n \)
Branes may wrap these cycles.
Number Operators of Wrapped Branes have AdS/CFT Dual
Quiver Gauge Theories Have \(\mathbb{Z}_n \) symmetries

Discrete Symmetries → NONCOMMUTATIVE
Pattern first recognized in hep-th/9811048: (Gukov, Rangamani, Witten)

D3 on Orbifold 6D Backgrounds \rightarrow Quiver Gauge Theories
Orbifold \mathbb{Z}_n Backgrounds \rightarrow Cycles Valued in \mathbb{Z}_n
Branes may wrap these cycles.
Number Operators of Wrapped Branes have AdS/CFT Dual
Quiver Gauge Theories Have \mathbb{Z}_n symmetries
Discrete Symmetries \rightarrow NONCOMMUTATIVE
$Y^{p,q}$ Geometries/CFT Duals

New infinite class of theories $Y^{p,q}$ geometries

(Gauntlett, Martelli, Sparks, Waldram (0403002))

\[
ds_1^2 = H^{-\frac{1}{2}} dx^\mu dx_\mu + H^{\frac{1}{2}} \left(dr^2 + r^2 \left(ds_{Y^{p,q}}^2 \right) \right)
\] \(1\)

When $\text{GCD}(p, q) = a \neq 1$ these are orbifold geometries.

Quiver diagram given by (Martelli, Sparks (0411238))

\[
\left(\sigma \tilde{\sigma} \tau \ldots \ldots \ldots \right) (\ldots) (\ldots) \ldots \
\]

(\((p-q)/a) \tau-\text{type, } (q/a) \sigma-\text{type})

\text{a-times}
\(Y^{p,q}\) Geometries/CFT Duals

New infinite class of theories \(Y^{p,q}\) geometries (Gauntlett, Martelli, Sparks, Waldram (0403002))

\[
ds_10^2 = H^{-\frac{1}{2}} dx^\mu dx_\mu + H^{\frac{1}{2}} \left(dr^2 + r^2 \left(ds_{Y^{p,q}}^2 \right) \right)
\]

(1)

When GCD\((p, q) = a \neq 1\) these are orbifold geometries.

Quiver diagram given by (Martelli, Sparks (0411238))

\[
\underbrace{(\sigma\tilde{\sigma} \tau \cdots \cdots \cdots \cdots \cdots)}(\cdots)(\cdots)\cdots
\]

(2)

\[(p-q)/a \quad \tau-\text{type}, \quad (q/a) \quad \sigma-\text{type}\]

\[a-\text{times}\]
\(Y^{p,q} \) Geometries/CFT Duals

New infinite class of theories \(Y^{p,q} \) geometries

\[(Gauntlett, Martelli, Sparks, Waldram (0403002))\]

\[ds_1^2 = H^{-\frac{1}{2}} dx^\mu dx_\mu + H^{\frac{1}{2}} \left(dr^2 + r^2 \left(ds_{Y^{p,q}}^2 \right) \right) \] \hspace{1cm} (1)

When \(\text{GCD}(p, q) = a \neq 1 \) these are orbifold geometries.

Quiver diagram given by (Martelli, Sparks (0411238))

\[
\begin{align*}
\left(\sigma \tilde{\sigma} \tau \cdots \cdots \cdots \cdots \cdots \right) & (\cdots) (\cdots) \cdots \\
\underbrace{((p-q)/a) \tau - \text{type}} \quad \underbrace{(q/a) \sigma - \text{type}} \quad \text{a-times}
\end{align*}
\] \hspace{1cm} (2)
\(Y^{p,q} \) Geometries/CFT Duals

New infinite class of theories \(Y^{p,q} \) geometries
(Gauntlett, Martelli, Sparks, Waldram (0403002))

\[
ds_10^2 = H^{-\frac{1}{2}}dx^\mu dx_\mu + H^{\frac{1}{2}} \left(dr^2 + r^2 \left(ds_{Y^{p,q}}^2 \right) \right) \tag{1}
\]

When \(\text{GCD}(p, q) = a \neq 1 \) these are orbifold geometries. Quiver diagram given by (Martelli, Sparks (0411238))

\[
\left(\sigma \tilde{\sigma} \tau \ldots \ldots \ldots \ldots \right) (\ldots) (\ldots) \ldots \tag{2}
\]

\(\left((p-q)/a \right) \tau \)-type, \((q/a) \sigma \)-type

\(a \)-times

Unit cells
Our Work

Example: $Y^{2,0}$: Diagram

Symmetries $A : (1, 2, 3, 4) \rightarrow (3, 4, 1, 2)$
$B : (1, 1, \omega, \omega^{-1})$ and $C : (\omega, \omega^{-1}, \omega^{-1}, \omega)$ with $\omega^{2N} = 1$

These satisfy (up to the COGG)

$$A^2 = B^2 = C^2 = 1, \quad AB = BAC, \quad C \text{ commutes} \quad (3)$$

and is a finite Heisenberg Group
Our Work

Example: $Y^{2,0}$: Diagram

Symmetries $A : (1, 2, 3, 4) \rightarrow (3, 4, 1, 2)$
$B : (1, 1, \omega, \omega^{-1})$ and $C : (\omega, \omega^{-1}, \omega^{-1}, \omega)$ with $\omega^{2N} = 1$

These satisfy (up to the COGG)

$$A^2 = B^2 = C^2 = 1, \quad AB = BAC, \quad C \text{ commutes}$$

and is a finite Heisenberg Group

B.A. Burrington, J. T. Liu, L.A. Pando Zayas

hep-th/0602094, hep-th/0603114
Our Work

Example: $Y^{2,0}$: Diagram

![Diagram](image)

Symmetries $A : (1, 2, 3, 4) \rightarrow (3, 4, 1, 2)$

$B : (1, 1, \omega, \omega^{-1})$ and $C : (\omega, \omega^{-1}, \omega^{-1}, \omega)$ with $\omega^{2N} = 1$

These satisfy (up to the COGG)

$$A^2 = B^2 = C^2 = 1, \quad AB = BAC, \quad C \text{ commutes} \quad (3)$$

and is a finite Heisenberg Group
General $Y^{p,q}$ (p, q not coprime)

We find this to be a general pattern, even for complicated $Y^{p,q}$!

We work out explicitly:
Conclusions

For a large class of theories, we find that \textit{Wrapped Brane Number Operators DO NOT COMMUTE!}
(Worked on by D. Belov and G. Moore)
We later generalize this to even the non-conformal case!
(hep-th/0603114)
(also, see hep-th/0412193 Herzog, Ejaz, Klebenov for non-conformal generalizations)