

... for a brighter future

A U.S. Department of Energy laboratory managed by UChicago Argonne, LLC Simple Atom, Extreme Nucleus: Laser Trapping and Probing of He-8

> Zheng-Tian Lu Argonne National Laboratory University of Chicago

Funding: DOE, Office of Nuclear Physics

Ionization Energy of Helium AtomLevel 2 ${}^{3}S_{1}$ Calculation1 152 842 741 ± 6 MHzExperiment1 152 842 743 MHz

Gordon Drake, Phys. Scripta (1999)

Effective Model of Nuclear Interaction

Two-body potential: Argonne V18

$$H = \sum_{i} K_{i} + \sum_{i < j} v_{ij}^{\gamma} + v_{ij}^{\pi} + v_{ij}^{R}$$

EM 1- π short-range

Coupling parameters fit to NN scattering data

Problem: binding energy of most light nuclei too small

Three-body potential: *Illinois-2*

$$V_{ijk} = V_{ijk}^{2\pi} + V_{ijk}^{3\pi} + V_{ijk}^{R}$$

Coupling parameters fit to energy levels of light nuclei

Pieper & Wiringa. Ann. Rev. Nucl. Part. Sci. (2001)

Quantum Monte Carlo Calculations of Light Nuclei

Halo Nuclei ⁶He and ⁸He

Isotope	Half-life	Spin	Isospin	Core + Valence
He-6	807 ms	0+	1	$\alpha + 2n$
He-8	119 ms	0 ⁺	2	$\alpha + 4n$

Quantum Monte Carlo calculation

Hadronic Probe: Scattering of ⁶He & ⁸He Beams

E&M Probe of Nuclear Charge Distribution

$$\left(\frac{d\sigma}{d\Omega}\right)_{\exp} = \left(\frac{d\sigma}{d\Omega}\right)_{Mott} \cdot \left|F(q^2)\right|^2$$

$$F(q^2) = 1 - \frac{1}{6}q^2 < r^2 >_{charge} + \cdots$$

$$mean-square radius < r^2 > = \int \rho(r) \cdot r^2 dv$$

$$root-mean-square radius \sqrt{\langle r^2 \rangle}$$

⁴He rms charge radius = 1.676 (8) fm [*I. Sick Phys Lett B* (1982)] Proton rms charge radius = 0.895(18) fm [*I. Sick Phys Lett B* (2003)]

Atomic Energy Levels of Helium

Cooling & Trapping at 1083 nm

- Single photon kick \rightarrow 0.1 m/s
- Transition rate ~ 4 x 10^6 /s
- Acceleration ~ 4 x 10^5 m/s²

Spectroscopy at 389 nm

- Single photon kick \rightarrow 0.3 m/s
- Doppler shift \rightarrow 400 kHz

Isotope Shift $\delta v = \delta v_{MS} + \delta v_{FS}$

Mass Shift & Search for Helium-Like Strangelets

P. Mueller, Z-T Lu et al., PRL (2004)

Limits on the Abundance of Anomalously Heavy Helium

Field (Volume) Shift

Atomic Theory of Helium

Drake, Can. J. Phys (2006); Pachucki & Sapirstein, J Phys B (2002)

- Non-relativistic wave functions from variational calculations
- Perturbation theory for relativistic corrections, QED, finite nuclear mass and nuclear charge radius
- QED terms "cancel" in isotope shift

For $2^{3}S_{1} - 3^{3}P_{2}$ transition @ 389 nm: ⁶He - ⁴He : $\delta v_{6,4} = 43196.207(15)$ MHz + 1.008 (<r²>_{He4} - <r²>_{He6}) MHz/fm² ⁸He - ⁴He : $\delta v_{8,4} = 64702.409(74)$ MHz + 1.008 (<r²>_{He4} - <r²>_{He8}) MHz/fm²

100 kHz error in IS $\leftarrow \rightarrow \sim 1\%$ error in radius

Laser Cooling and Trapping

Technical challenges:

- Short lifetime, small samples (<10⁶ atoms/s available)
- Metastable efficiency ~ 10⁻⁵
- Precision requirement (~100 kHz)

Magneto-Optical Trap (MOT)

- Cooling: Temperature~ 1 mK,
 - → avoid Doppler shift / width
- Long observation time: 100 ms
- Spatial confinement: trap size < 1 mm
 - \rightarrow single atom sensitivity
- Selectivity: \rightarrow no isotopic / isobaric interference

⁸He: The Most Neutron-Rich Nucleus

				10[\]	11N	12N	13[]	14[]	15N
			98	۶C	10C	110	120	130	14C
			7B	≈B	۶B	10B	ыB	12B	13B
4	•		6Be	7Be	®Be	°Be	¹⁰ Be	11Be	12Be
otons		⁴Li	₅Li	۴Li	7Li	°Li	۶Li	™Li	¹¹Li
		зНе	⁴He	₅He	€He	7He	°He	°Не	¹®He
f pr	ъH	2H	зН	⁴H	₅H	еH			
0#		'n							

of neutrons

Atom Trapping of ⁶He & ⁸He at GANIL

He-8 Trapped!

Isotope Shift and Field Shift : J - Dependence?

⁶He & ⁸He Charge Radii

	⁶ He	⁸ He		
Field Shift, MHz	-1.464(34)	-0.916(95)		
RMS R _{CH} , fm	2.068(11)	1.929(26)		
Total Uncertainty	0.5 %	1.3 %		
- Statistical	0.1 %	0.6 %		
- Trap Systematics	0.3 %	0.6 %		
- Mass Systematics	0.2 %	1.0 %		
- He-4: 1.676(8) fm	0.3 %	0.4 %		

Recoil Correction $E_{\gamma} = E_{\text{int}} + \frac{P_{\gamma}^2}{2M_{atom}}$

Charge Radius vs. Point-Proton Radius

$$Z < r_c^2 > = Z < r_p^2 > + Z(< R_p^2 > + 0.75/M_p^2) + N < R_n^2 >$$

Mean square charge radii of nucleons: Neutron $\langle R_n^2 \rangle = -0.116(2) \text{ fm}^2$ Proton $\langle R_p^2 \rangle = 0.769(12) \text{ fm}^2$ (I. Sick) Darwin-Foldy $0.75/M_p^2 = 0.033 \text{ fm}^2$ (J. Friar)

⁶He & ⁸He RMS Point Proton and Matter Radii

He-6 Collaboration

P. Mueller, L.-B. Wang, K. Bailey, J.P. Greene, D. Henderson, R.J. Holt, R. Janssens, C.L. Jiang, Z.-T. Lu, T.P. O'Conner, R.C. Pardo, K.E. Rehm, J.P. Schiffer, X.D. Tang - *Physics, Argonne* G. W. F. Drake - *Univ of Windsor, Canada*

He-8 Collaboration

P. Mueller, K. Bailey, R. J. Holt, R. V. F. Janssens, Z.-T. Lu, T. P. O'Connor, I. Sulai - *Physics, Argonne;* M.-G. Saint Laurent, *J.-Ch. Thomas, A.C.C. Villari -* GANIL, Caen, France G. W. F. Drake - Univ of Windsor, Canada L.-B. Wang – Los Alamos Lab

