Towards an optical parity violation experiment in francium: Spectroscopy of the 7s - 8s transition

[From difficult to really[™] difficult experiments]

G. Gwinner University of Manitoba for the FrPNC collaboration

bush

beam

SAC

pped

'precision' MOT

trap laser beams

Rare Atom Workshop — Ann Arbor, June 2009

ISAC + actinide target: great place to study fundamental symmetries in heavy atoms

Atoms/nuclei provide access to fun. sym., should be viewed as complementary to high energy approaches

	Atom	Nucleus
Charged current weak interactions, β-decay	new powerful techniques (atom traps)	rich selection of spin, isospin, half-life
Neutral current weak interactions APNC anapoles	tremendous accuracy of atomic methods (lasers, microwaves) neutral (strong external fields)	huge enhancement of effects (high Z, deformation) over elementary particles rich selection of spin.
Permanent electric dipole moments	traps, cooling	isospin, Z, N, deformation
Lorentz-symmetry & CPT violation	accuracy	selection of spin, Z, N

Some of most promising new candidates are heavy, radioactive systems (Rn, Fr) Radioactive beam facilities are crucial

Demanding, long experiments \rightarrow strong motivation for dedicated beam delivery

Atomic Parity Violation

Z-boson exchange between atomic electrons and the quarks in the nucleus

nucl. spin *independent* interaction: coherent over all nucleons H_{PNC} mixes electronic *s* & *p* states

< n's' | H_{PNC} | $np > \propto Z^3$ Drive s \rightarrow s E1 transition!

Cs: 6s \rightarrow 7s osc. strength f \approx 10⁻²² use interference: $f \propto |A_{PC} + A_{PNC}|^2$ $\approx A_{PC}^2 + A_{PC} A_{PNC} \cos \varphi$ The nuclear-spin independent APNC Hamiltonian for a pointlike nucleus:

$$H_{\rm PNC}^{nsi} = \frac{G}{\sqrt{2}} \frac{Q_W}{2} \gamma_5 \,\delta(\mathbf{r}).$$

$$Q_W = 2(\kappa_{1p}Z + \kappa_{1n}N)$$

$$\kappa_{1p} = \frac{1}{2}(1 - 4\sin^2\theta_W), \kappa_{1n} = -\frac{1}{2}$$

The "nuclear weak charge" contains the weak interaction physics

$$< n'L'|H_{PNC}^{nsi}|nL > = \frac{G}{\sqrt{2}} \frac{Q_w}{2} < n'L'|\delta(r)\vec{\sigma} \cdot \vec{p}|nL >$$

$$\propto < n'L'|\frac{d}{dr}|nL > |_{r=0} \qquad R_{nL} \approx r^L Z^{L+1/2}$$

$$\Rightarrow \text{ at } r = 0 \text{ only } R_{ns}, \frac{d}{dr} R_{np} \text{ are finite}$$

$$H_{PNC} \text{ mixes } s \text{ and } p \text{ states} \qquad < ns|H_{PNC}^{nsi}|n'p > \propto Z^3$$

 $H_{\rm PNC}$ mixes s and p states

Implications on 'new physics' from the Boulder Cs experiment (adapted from D. Budker, WEIN 98)

New Physics	Parameter	Constraint from atomic PNC	Direct constraints from HEP	
Oblique radiative corrections	S+0.006T	S = -0.56(60)	$S=-0.13 \pm 0.1 (-0.08)$ T=-0.13 ± 0.11 (+0.09)	
Z _x -boson in SO(10) model	$M(\mathbf{Z}_x)$	> 1.4 TeV	> 820 GeV LHC, ILC: > 5 TeV (?)	
Leptoquarks	M_S	>0.7 TeV	> 256 GeV, >1200 GeV indir	
Composite Fermions	L	>14 TeV	>6 TeV	

APNC can also constrain other scenarios, e.g. couplings to new light particles (e.g. Bouchiat & Fayet 05)

Why Cs ? Not particularly heavy...
It's the heaviest, stable 'simple atom' atomic structure factor

$$\langle i|H_{PNC,1}|j\rangle = \frac{G_F}{2\sqrt{2}} C_{ij}(Z) \mathcal{N}$$
 $q_n = \int \rho_n(r) f(r) d^3r$,
 $\times \left[-Nq_n + Z(1-4\sin^2\theta_W)q_p \right]$
from Pollock et al. 1992

Precise experiments in TI (and Bi, Pb) have been limited by their more complicated atomic structure!

Use francium (Z=87)

atomic structure (theory) understood at the same level as in Cs

APNC effect 18 x larger!

Problems: (i) no stable isotope (ii) need to know neutron radius better than for Cs expt.

Answers: (i) go to TRIUMF's actinide target to get loads of Fr (ii) the upcoming PREX experiment at Jefferson Lab will measure the neutron radius of ²⁰⁸Pb

A Francium APNC Experiment at TRIUMF

F=15/2

7P_{3/2}

F=13/2

7P_{1/2}

First photon 817 nm

A Fr APNC experiment at TRIUMF

- Actinide target will make ISAC the best place to pursue Fr physics such as NSI APNC
- data collection time (purely statistical, no duty factor)
 - 10⁶ trapped atoms, 1.0% APNC: 2.3 hours
 - 10⁷ trapped atoms, 0.1% APNC: 23 hours
 - APNC work can start even with low current on ISAC target!
 - But: most of the time needs to be spent on systematics. So realistically we are talking 100 days or more of beam, spread of more than a year!
- 1% neutron radius measurement in ²⁰⁸Pb with PREX would put a 0.2 % uncertainty on Q_w in ²¹²Fr (Sil 2005)
- atomic theory similar to Cs (0.4 0.5 % uncertainty), so progress in this direction required to go beyond Wood et al.
- can expect that all aspects improve over time (already happening: new Cs (alkali) APNC calculation by Derevianko et al.)

Working our way down: Spectroscopy of the highly forbidden 7s \rightarrow 8s transition (indispensable for APNC, but very interesting by itself)

$$A_{7s \rightarrow 8s} = E1_{\rm stark} + M1 + E1_{\rm pnc}$$

 $E1_{\text{stark}}(F, m \to F', m') = \alpha \vec{E} \cdot \vec{\epsilon} \, \delta_{F, F'} \delta_{m, m'} + i\beta (\vec{E} \times \vec{\epsilon}) \cdot \langle F'm' | \vec{\sigma} | Fm \rangle$

- One of the faintest transitions observed in atoms (osc. strength in Cs about 10⁻¹³ in vacuum)
- MI amplitude due to relativistic effect and hyperfine interaction, mech. for MI_{rel} has been unclear for a long time
- "Most sensitive electromagnetic transition to the accuracy of the relativistic description of an atomic system" (Savukov et al, PRL 1999)
- So far, only measured in Cs (Gilbert 1983), in context of APNC measurements
- Wavelengths in Rb (497 nm) and Fr (506 nm) very similar
 ⇒can use same equipment

Relativistic atomic structure

- Savukov et al: precise calculation of MI_{rel} for all alkalis
 - importance of negative-energy states, found large effect

	Li	Na	K	\mathbf{Rb}	Cs	Fr
Z	3	11	19	37	55	87
Ι	0.91	1.16	1.15	1.38	1.51	2.09
II, no-pair	0.12	0.03	-0.08	-1.86	-10.69	-116
II, NES	0.02	0.13	0.20	0.31	0.40	0.64
Total	1.05	1.06	1.27	-0.17	-8.78	-113
Experiment					-10.40(0.03)	

- Rb: cancellation of terms leads to very small $MI_{\mbox{rel}}$
- Cs: 16% discrepancy between theory and experiment
- Fr: one term dominates
- data in all 3 elements could constrain different terms

I. M. Savukov, A. Derevianko, H. G. Berry, and W. R. Johnson, Phys. Rev. Lett. 83, 2914 (1999)

Importance of M1 in context of APNC

- MI_{rel} is extremely valuable benchmark for calculations of relativistic effects and radiative corrections in Fr
- MI_{hf} is best way to determine tensor transition polarizability β
 - β hard to measure, but essential for APNC, which observes the quantity $E1_{\rm PNC}$

$$\beta E$$

• Measure El_{stark}-MI interference

- MI_{hf} part can be reliably calculated from the hyperfine structure, and hence used to get β
- El_{stark}-MI interference has been biggest systematic error in Cs APNC measurements, need to understand it

Pre-APNC Measurements with 7s \rightarrow 8s

- Can (need to) measure α , β , MI_{rel}, MI_{hf}
- Follow largely procedure developed over the years by the Boulder group
- Big difference: atom source
 - Cs beam: up to 10¹⁵ s⁻¹ cm⁻²
 - relevant # for comparison with trap

2.2 × 10⁶ atoms in interaction region (about 10 × less in 1980s work)

• 10^6 to 10^7 atoms in the precision trap should be sufficient to do similar work (even 10^5 for α)

All of these measurements are difficult, but let's start with something 'relatively easy'

- Can we do something in a 'standard issue' MOT, e.g. developed and debugged with hyperfine anomalies/isotope shifts ?
- I think so
 - Scalar transition polarizability

 $E1_{\rm stark}(F, m \to F', m') = \alpha \vec{E} \cdot \vec{\epsilon} \, \delta_{F,F'} \delta_{m,m'} + i\beta(\vec{E} \times \vec{\epsilon}) \cdot \langle F'm' | \vec{\sigma} | Fm \rangle$

- In Fr, for E > 20 V/cm, " α -type" Stark amplitude dominates
 - at kV/cm by far easiest to detect
 - need electric field, but no need to flip it
 - no need to lift m-degeneracy
 - start with regular MOT, B and E fields permanent

"α-type" Stark Amplitude Measurement

- $\Delta F, \Delta m = 0$ $E1_{\text{stark}}(F, m \to F', m') = \alpha \vec{E} \cdot \vec{\epsilon} \, \delta_{F,F'} \delta_{m,m'} + i\beta(\vec{E} \times \vec{\epsilon}) \cdot \langle F'm' | \vec{\sigma} | Fm \rangle$
- $R_{\alpha} = 0.00034 \times E^2$ per second and atom
- 3 kV/cm, 10⁶ atoms, 200 mW laser focused to 1 mm Ø
 ⇒ 3 × 10⁹ excitations per second
- cycling scheme, can get near 100% 7s → 8s photon det. eff.

 β -type: same principle, but 30x smaller

El_{stark} - MI IF Measurement

- m degeneracy needs to be lifted
 - turn off MOT fields and turn on homogenous B field for a few msec (10- few 10 Gauss) → new exciting development: AC MOT
 - or: transfer into dipole trap
- choose e.g. F = 11/2, $m = 11/2 \rightarrow F = 13/2$, m = 13/2 transition
- $E = 2 \text{ kV/cm} \Rightarrow MI$ excitation rate 400 × weaker than

EI, but IF term is only 20 × down

• asymmetry under reversals is then 20% !

$$\eta = 2 \frac{|E1 + M1|^2 - |E1 - M1|^2}{|E1 + M1|^2 + |E1 - M1|^2}$$

El_{stark} - MI IF Measurement

- I % measurement of asymmetry required 0.2 % on the overall transition
- in the shot noise limit: need to detect 250 000 excitations
- 10⁶ atoms, 10% duty factor in the trap: can be done in a fraction of a second
- By performing this measurement on the $\Delta F = \pm I$ transitions and looking at the difference, can get MI_{hf}
- In Fr, roughly 10 × smaller than M1_{rel}, so statistics on overall transition need to be at 0.02% level, takes 100 × longer (about 10 seconds)

- Canadian SAP plan: high priority for francium
- Hyperfine anomalies: study of nuclear properties, tune up Fr apparatus (E 1010 approved)
- Anapole measurement (E 1065 approved)
- 7s-8s Stark/MI: precursor to optical APNC (in preparation)
- Optical APNC (future EEC proposal)
- e-EDM: letter of intent by H. Gould (LBNL)

The FrPNC members participating in S1218

(in fairly arbitrary order):

G. Gwinner, C. de Oliveira* (*Manitoba*)
E. Gomez (*San Luis Potosi, Mexico*)
J.A. Behr, M.R. Pearson (*TRIUMF*)
L.A. Orozco, A. Perez Galvan*, D. Sheng* (*Maryland*)
D.G. Melconian (*Texas A&M*)
S. Aubin (*William and Mary*)

* Students

