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ISAC + actinide target: great place to study fundamental symmetries in

heavy atoms

Atoms/nuclei provide access to fun. sym., should be viewed as
complementary to high energy approaches
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Some of most promising new candidates are heavy, radioactive systems (Rn, Fr)
Radioactive beam facilities are crucial

Demanding, long experiments — strong motivation for dedicated beam delivery
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Atomic Parity Violation
Z-boson exchange between atomic electrons and the quarks in the nucleus
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Orozco et al.

N N
nucl. spin independent interaction:
coherent over all nucleons Cs: 6s — 7s osc. strength f = 102
Henc mixes electronic s & p states use interference:

f«|Apc +Apnc|?

<n’s’| Henc | np > o« Z73
=~ Apc? + Apc Apnc COS @

Drive s — S E1 transition!
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The nuclear-spin independent APNC Hamiltonian for a pointlike nucleus:

ns1 G QW

Hpne = J2 2 V5 0(r). Qw = 2(’flpz + K1ndV)
1 1
= —(1 —4sin® 4 n=—=
Kip 2( in” Oy ), k1 ;
The "nuclear weak charge”
contains the weak interaction physics
<n'L'|HX .|nL > =G 9% - n1|6(r)o - plnL >
PNC V2 2
x< 'L inL > |r=g Rup ~ rtzt+1/2

= atr = 0 only R,;, %Rnp are finite

Hpne mixes s and p states < ns|HyyaIn'p > Z°

Bouchiat, 1974
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The Boulder Cs Experiment
(Wood, 19906)

7s) = |7s + ep) 7Sy

| E1tosurdo + E1pne |2

Dye Laser
(540 nm)

65) = |65 + €p) 65,5

9.19 GHz

IM(Elpne)  —1.5576(77) mV/cm 6S F=3—> 7S F' = 4
B ~ —1.6349(80) mV/cm 6S F =4 — 7S F' = 3
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Weak Mixing Angle

Scale dependence in MS scheme including higher orders
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Young et al., PRL 2007: Dramatic
recent progress from PV electron
scattering for (C1u - C14)

APNC uniquely provides the orthogonal
constraint (C1y + C14)

[l S. G. Porsey, K. Beloy, and A.
Derevianko. PRL, 102,:181601, 2009.
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Implications on 'new physics' from the Boulder Cs experiment
(adapted from D. Budker, WEIN 98)

New Physics Parameter | Constraint from Direct constraints
atomic PNC tfrom HEP
Oblique radiative | $+0.006T |S =-0.56(60) S=-0.13 = 0.1 (-0.08)

corrections T=-0.13 £ 0.11 (+0.09)
Z,-boson in MZ,) | >M4a7e\V >820GeV

SO(10) model | - LHC, ILC: > 5 TeV (?)
Leptoquarks M; | >0.7TeV > 256 GeV, >1200 GeV indir.
Composite L | >14 TeV >6 TeV
Fermions

Why is APNC so sensitive?

APNC can also constrain
Z other scenarios, e.g.

new physics couplings to new light
particles

LEP (e.g. Bouchiat & Fayet 05)

cross section —

2>
U
Z
O

log(energy) —

Friday, June 5, 2009



Why Cs ? Not particularly heavy...

It's the heaviest, stable S|mple atom'’ atomic structure factor

nuclear structure factors

(i|[Hpne,1|7) = i V\ r) £(r) d¥,
pp(f) f(r)d

— Ng,, + Z(1 — 4 sin 9w)qp

from Pollock et al. 1992

Precise experiments in Tl (and Bi, Pb) have been limited by their more
complicated atomic structure!

Use francium (Z=87)
atomic structure (theory) understood at the same level as in Cs

APNC effect 18 x larger!

Problems: (i) no stable isotope
(i) need to know neutron radius better than for Cs expt.

Answers: (i) go to TRIUMF’s actinide target to get loads of Fr

(i) the upcoming PREX experiment at Jefferson Lab
will measure the neutron radius of 23Pb
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A Francium APNC Experiment at TRIUMF

Boulder Cs: massive atomic beam

(1073 s cm2) N
key figure: 1070 6s-7s excitations /sec continuum
Fr trap: )
excitation rate per atom: 30 s
but asymmetry 18x larger
APNC possible with 10° - 107 atoms!
F=13/2 ‘,:HBS’HE
magnetic field coils__ F=11/2
/ \[ﬁl‘nt deifcted
Second e F=15/2
\ photon /“L ?PEIE
1.3 um a
r\ Optical
Frion b PNC Trap and F=13/2
Fionbean \<B\ ey | s S Z R
506 nm 718 nm
First photon
t 'precision' MOT 817 nm
r
L?ggrrnpush Iaggr beams F=13/2 < aﬂf 1Pl
t d
Frragcgerrns dryfilm coated F=11/2 e
neutralizer cell (capture MOT)
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A Fr APNC experiment at TRIUMF

e Actinide target will make ISAC the best place to pursue Fr physics such
as NSI APNC

e data collection time (purely statistical, no duty factor)
e 10° trapped atoms, 1.0% APNC: 2.3 hours
e 107 trapped atoms, 0.1% APNC: 23 hours

= APNC work can start even with low current on ISAC target!

= But: most of the time needs to be spent on systematics. So
realistically we are talking 100 days or more of beam, spread of
more than a year!

* 1% neutron radius measurement in 298Pb with PREX would put a 0.2 %
uncertainty on Qu in 4'?Fr (Sil 2005)

e atomic theory similar to Cs {8-4—6-5-5sunreeramty}, so progress in this

direction required to go beyond Wood et al.

e can expect that all aspects improve over time (already happening: new
Cs (alkali) APNC calculation by Derevianko et al.)
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Working our way down: Spectroscopy of the highly
forbidden 75 — 85 tranSition (indispensable for APNC, but very interesting by itself)

[ATS—J-SS =z Elstark + M1+ Elpnc}

Elguc(F,m — F',m) = aE - €8p pr0mm + iB(E X €) - (F'm|G|Fm)

* One of the faintest transitions observed in atoms (osc.
strength in Cs about 10-'3in vacuum)

e M| amplitude due to relativistic effect and hyperfine
interaction, mech. for Ml has been unclear for a long time

* “Most sensitive electromagnetic transition to the accuracy of
the relativistic description of an atomic system” (Savukov et

al, PRL 1999)

* So far, only measured in Cs (Gilbert 1983), in context of
APNC measurements

* Wavelengths in Rb (497 nm) and Fr (506 nm) very similar
=»can use same equipment
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Relativistic atomic structure

e Savukov et al: precise calculation of M| e for all alkalis
* importance of negative-energy states, found large effect

Li Na K Rb Cs Fr
Z 3 11 19 37 515 87
I 091 1.16 1.15 1.38 1.51 2.09
II, no-pair 0.12 0.03 -0.08 -1.86 -10.69 -116
II, NES 0.02 0.13 0.20 0.31 0.40 0.64
Total 1.06 1.06 1.27 -0.17 -8.78 -113
Experiment -10.40 (0.03)

e Rb: cancellation of terms leads to very small M1

e Cs: 16% discrepancy between theory and experiment
* Fr:one term dominates

e data in all 3 elements could constrain different terms

|. M. Savukov, A. Derevianko, H. G. Berry, and W. R. Johnson, Phys. Rev. Lett. 83, 2914 (1999)
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Importance of M| in context of APNC

* Ml el is extremely valuable benchmark for calculations of
relativistic effects and radiative corrections in Fr
* Ml is best way to determine tensor transition

polarizability 8
* [ hard to measure, but essential for APNC, which
b th tit
observes the quantity Elpne

BE

e Measure El:ak-M1 interference

M1
BF
* Ml part can be reliably calculated from the hyperfine

structure, and hence used to get f8
* Elswrk-MI interference has been biggest systematic error
in Cs APNC measurements, need to understand it
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Pre-APNC Measurements with 7s — 8s

e Can (need to) measure &, B, Ml el, M1

* Follow largely procedure developed over the years by the
Boulder group

* Big difference: atom source
e Cs beam:up to 10" s*! cm™2

* relevant # for comparison with trap

2.2 x |10% atoms in interaction region

(about 10 % less in 1980s work)

e 0% to 107 atoms in the precision trap should be
sufficient to do similar work (even 10° for &)
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All of these measurements are difficult, but let’s start
with something ‘relatively easy’

e Can we do something in a ‘standard issue’ MOT, e.g.

developed and debugged with hyperfine anomalies/isotope
shifts ?

* | think so
e Scalar transition polarizability

Elgax(F,m — F',m') = oF - € 0p FrOm m + iB(E x &) - (F'm’|3|Fm)

* In Fr,for E > 20V/cm, “X-type” Stark amplitude dominates
e at kV/cm by far easiest to detect

* need electric field, but no need to flip it
* no need to lift m-degeneracy

e start with regular MOT, B and E fields permanent
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“0-type” Stark Amplitude Measurement
e AFAM =0 Elg(F,m— F,m')= 0F - €85 p10mm + i8(E x &) - (F'm/|G|Fm)

* R« =0.00034 x E? per second and atom
e 3 kV/cm, 10% atoms, 200 mWV laser focused to | mm @

= 3 x |07 excitations per second

* cycling scheme, can get near 100% 7s — 8s photon det. eff.

8s. E —Sor
(3)
—e— /P, ——
—— 7p1/2 -
(5)
/718 nm
—— —
751/2 (6)
—
_/

B-type: same principle, but 30x smaller
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Elcak - M| IF Measurement

* m - degeneracy needs to be lifted
e turn off MOT fields and turn on homogenous B field for

a few msec (10- few 10 Gauss) = new exciting
development: AC MOT
* or:transfer into dipole trap

El+ M1 — |E1 — M1|?
El+ M1|2+ |E1 — M1}?
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Elcak - M| IF Measurement

* | % measurement of asymmetry required 0.2 % on the
overall transition

e in the shot noise limit: need to detect 250 000 excitations

e |0% atoms, 10% duty factor in the trap: can be done in a
fraction of a second

* By performing this measurement on the AF = x|
transitions and looking at the difference, can get M| s

* In Fr,roughly 10 x smaller than M1, so statistics on
overall transition need to be at 0.02% level, takes 100 X
longer (about 10 seconds)
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not “standalone” osc. strengths
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The power of Stark-tunability

not “standalone” osc. strengths

p-E1 stark £ pNC
]
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2008 2009 2010 2011 2012 2013 2014 2015

anapole, off-line preparation (Maryland)
Rb M1 (Manitoba)

actinide target

HF anomaly
E1010 approved

approved ,
75-8s M1 optical APNC

approved anapole E 1065

e Canadian SAP plan: high priority for francium

* Hyperfine anomalies: study of nuclear properties, tune up Fr apparatus
(E 1010 approved)

* Anapole measurement (E 1065 approved)

e /s-8s Stark/MI: precursor to optical APNC (in preparation)
* Optical APNC (future EEC proposal)

e e-EDM: letter of intent by H. Gould (LBNL)
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The FrPNC members participating in S1218
(in fairly arbitrary order):

G. Gwinner, C. de Oliveira® (Manitoba)

E. Gomez (San Luis Potosi, Mexico)

J.A. Behr, M.R. Pearson (TRIUMF)

L.A. Orozco, A. Perez Galvan*, D. Sheng* (Maryland)
D.G. Melconian (7Texas A&M)

S. Aubin (William and Mary)

* Students

innip'eg (“where all atoms are ultracold”)
but at least it is sunny and dry...
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