

... for a brighter future

Progress on the Search for EDM in Ra-225

A U.S. Department of Energy laboratory managed by The University of Chicago

W. L. Trimble, I.A. Sulai, P. Mueller, I. Ahmad, K. Bailey, W. Korsch, B. Graner, J. P. Greene, T. P. O'Connor, R. J. Holt, Z.-T. Lu

Atomic EDM Violates Both P and T and appears as a perturbation to NMR

Ra is diamagnetic (like Rn, Xe, Hg) EDM measurements sensitive to **Schiff moment of nucleus**

$$H = \vec{\mu} \cdot \vec{B} \pm \vec{d} \cdot \vec{E}$$

Atomic EDM Violates Both P and T and appears as a perturbation to NMR

Ra is diamagnetic (like Rn, Xe, Hg) EDM measurements sensitive to **Schiff moment of nucleus**

$$H = \vec{\mu} \cdot \vec{B} \pm \vec{d} \cdot \vec{E}$$

Workshop on Atomic Physics with Rare Atoms June 1-3, 2009

3

Radium-225 has enhancement of observable effect of symmetry-violation over stable nuclei

- Large intrinsic Schiff moment due to octupole deformation
- Closely spaced parity doublet
- Relativistic atomic structure

Haxton & Henley (1983) Auerbach, Flambaum & Spevak (1996) Engel, Friar & Hayes (2000)

Skyrme Model	Isoscalar	Isovector	Isotensor
SkM*	1500	900	1500
SkO'	450	240	600

Enhancement Factor: EDM (²²⁵Ra) / EDM (¹⁹⁹Hg)

Schiff moment of ¹⁹⁹Hg, de Jesus & Engel, PRC72 (2005) Schiff moment of ²²⁵Ra, Dobaczewski & Engel, PRL94 (2005)

²²⁶Ra Source

I = 1/2

• 2 mCi ²²⁵Ra sources available from ORNL

competing with experimental cancer therapies using ²¹³Bi, ²²⁵Ac

• Test source: 300 nCi ²²⁶Ra - invaluable for testing

• | d(¹⁹⁹Hg) | < 3 x 10⁻²⁹ e-cm (95% C.L.) Griffith *et al.*, *PRL 102 (2009)*

• | d(¹⁹⁹Hg) | < 3 × 10⁻²⁹ e-cm (95% C.L.) Griffith *et al.*, *PRL 102 (2009)*

Technical targets:

Efficient transfer from Magneto-Optical Trap to Optical Dipole Trap (summer 2009)

Target vacuum: 10^{-10} Torr so that atoms remain in optical trap for > 100 seconds

Target number: > 10,000 atoms in optical dipole trap for NMR measurement

Experimental setup

W. Trimble

Workshop on Atomic Physics with Rare Atoms June 1-3, 2009 10

300 ng radium sources are treated with great care here.

Radium oven

Zeeman slower

Stern man

Geiger counter

Photo credit: Z-T Lu

Special thanks to our health physicists Paul Niquette and Lee Sprouse.

Workshop on Atomic Physics with Rare Atoms June 1-3, 2009 11

Magnetic Field Shielding and Generation

3-layer mu metal shield 3×10^4 shielding factor

Cosine theta Coil to generate bias B field B = 10mG B gradient < 10µG/cm

W. Trimble

Workshop on Atomic Physics with Rare Atoms June 1-3, 2009 12

Initial measurement: two vapor cell magnetometers Improved measurement: Yb co-magnetometer

W. Trimble

Ancillary measurement of magnetic fields with Rb

W. Trimble

Target magnetic measurement sensitivities

Species		$\Delta B/B$	ΔB
Ra	100 sec. statistical. N = $30,000$	10-5	10-7 G
Rb cell	100 sec.	5 × 10-7	10 ⁻¹⁰ G
Ra	2-week half-life (5000 shots) statistical	10-7	10 ⁻⁹ G
Rb cell	Systematic target	5 × 10 ⁻⁹	10-11 G

100 kV / cm -- done.

20 kV over 2mm vacuum gap 50 pA leakage currents observed

W. Trimble

Transverse optical pumping of trapped radium optical readout of NMR

Measurements from the radium MOT so far

Lifetime of ³P₁ cooling level Scielzo et al. (PRA, 73, 010501(R) (2006))

Blackbody repumping assisted magneto - optical trapping

Hyperfine Constants and Isotope Shift on ${}^{3}D_{1} - {}^{1}P_{1}$ transition for ${}^{225}Ra$ and ${}^{226}Ra$ Guest et al. (PRL 98, 093001 (2007))

The road ahead

MOT size is now 15,000 ²²⁶Ra; need 10,000 ²²⁵Ra for first EDM Increase MOT storage time. Blue slowing -- up to 100x higher loading with the same source strength.

After first measurement, stronger sources. 2-week half-life means online operation not necessary.

Atom Trap Trace Analysis (ATTA) at Argonne

William L. Trimble, Will Williams, Roy J. Holt, Kenneth Rudinger, Wolfgang Korsch, Z-T. Lu Brent Graner, Ibrahim A. Sulai, Kevin G. Bailey, Bob Sun, Peter Mueller, Tom P. O'Connor

Not pictured: Irshad Ahmad, John Greene

