86

86m Rb recoils

Rb d5/2

< □ > < 同 > < 回 > <

# TRIUMF Neutral Atom Trap: decay topics

- Tensor interaction constraints from singles recoil spin asymmetry
- Recoil momentum spectrum from I.C. of <sup>86m</sup>Rb
- Hyperfine spectroscopy of Rb  $5s_{1/2} \rightarrow 5d_{5/2}$
- some foibles of electron timing with MCP's
- 'AC MOT' for <sup>37</sup>K: see D. Melconian



not covered:  ${}^{38m}$ K  $\beta$ - $\nu$  correlation upgrade, except some prep

meta: at ISAC large amounts of many Rb isotopes are available from several common targets. We test equipment for K experiments while doing Rb experiments.

### TRIUMF Neutral-Atom Trapping "TRINAT" for this decay work

| <u>UBC</u>    | TRIUMF         | <u>Tel Aviv</u>     | Undergrad         |  |
|---------------|----------------|---------------------|-------------------|--|
| **R. Pitcairn | J.A.Behr       | D Ashery            | B. Lee            |  |
| **D. Roberge  | *A.Gorelov     | **O. Aviv           | A. Gaudin         |  |
| **T. Kong     | M.R. Pearson   |                     | B. Dej            |  |
|               | K.P. Jackson   | <u>U. Manitoba</u>  | T. Wiebe          |  |
|               | M. Dombsky     | G. Gwinner          | A. Chatwin-Davies |  |
|               | P. Bricault    | Texas A&M           | A. Berman         |  |
|               | *C. Höhr       | D. Melconian        |                   |  |
|               | *J. Holt       | **S. Behling        |                   |  |
| ,             | **Grad Student | *Research Associate |                   |  |

Supported by Canadian NSERC, Canadian NRC through TRIUMF, WestGrid, Israel Science Foundation

J.A. Behr, TRIUMF

▲□▶▲□▶▲□▶▲□▶ □ のQ@

tensors

Rb d5/2

A new method for an old observable (Treiman '58) Final nuclei angular distribution wrt initial spin  $W[\theta] = (1 + \frac{1}{2}cTx_2) - x_1(A_{\beta} + B_{\nu})P\cos\theta - x_2cT\cos^2\theta$  $x_1 \stackrel{Q >> m}{\rightarrow} 5/8; P = \frac{\langle M \rangle}{l}; T = \frac{l(l+1) - 3 \langle M^2 \rangle}{l(2l-1)}$ 34 s • For pure Gamow-Teller, Arecoil = 0 in SM <sup>80</sup>Rb Relatively clean Gamow-Teller decay ∣⇒ 5.9 5.9 21.6% 5.2 616.6  $\boldsymbol{A}_{\beta} + \boldsymbol{B}_{\nu} = \lambda_{J'J} (-2\boldsymbol{C}_{T}\boldsymbol{C}_{T}' + \langle \frac{m}{E_{\beta}} \rangle (\boldsymbol{C}_{T} + \boldsymbol{C}_{T}'))$ 74.4 % 4.9 Challenge: constrain  $\sim$  0.01 recoil-order <sup>80</sup>Kr Q=4.698 correction ◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ◆ ○○

# $\beta$ decay tensor interactions 4-Fermi contact interactions, Lee and Yang 1957 Generalization of Fermi's $\beta$ decay theory: Lorenz scalar product of currents with matching Lorenz transformations

$$H_{\text{int}} = \sum_{X=V,A,S,T} (\bar{\psi}_{\rho} O_X \psi_n) (C_X \bar{\psi}_e O_X \psi_{\nu} + C'_X \bar{\psi}_e O_X \gamma_5 \psi_{\nu})$$

Standard Model W<sup>+</sup> exchange (coupling only to left-handed  $\nu_L$ )  $\rightarrow C_V$ ,  $C_A$  only, i.e 'V-A'

Severijns, Beck, Naviliat-Cuncic Rev Mod Phys 2006 global fit  $C_T/C_A$ =0.0086±0.0031 assuming SM chirality for  $C_T$ ,  $C_S$  (and Serebrov 2005 n t<sub>1/2</sub>)

Profumo Ramsey-Musolf Tulin PRD 2007: SUSY can produce  $C_T \sim 0.001$  by left-right sfermion mixing

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

### **TRIUMF's Neutral Atom Trap**

- Isotope/Isomer selective
- $\bullet$  Evade 1000x untrapped atom background by  $\rightarrow$  2nd MOT
- 75% transfer (must avoid backgrounds!); 10<sup>-3</sup> capture
- 0.7 mm cloud for  $\beta$ -Ar<sup>+</sup>  $\rightarrow \nu$  momentum  $\rightarrow$ 
  - $\beta$ -u correlation
- >97% polarized, known atomically





# <sup>80</sup>Kr daughter TOF, position; atomic e<sup>-</sup> trigger

#### like Vetter LBL PRC'08



TRIUMF neutral atom trap: decays

Rb d<sub>5/2</sub>

#### **MCP and electrostatic rings**

tensors



#### TRIUMF neutral atom trap: decays

#### ≣ ► ≣ ৩৭০ J.A. Behr, TRIUMF

| intro                   | tensor                             | rs <sup>86m</sup> Rb recoils                                                                                                                                                                | Rb d <sub>5/2</sub>                                                                                 | e <sup>-</sup> timing                                                                                    | AC MOT      |
|-------------------------|------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|-------------|
|                         | <sup>80</sup> Rb Sing              | les Recoil Asymme                                                                                                                                                                           | etry: data and                                                                                      | d fits                                                                                                   |             |
| <b>A</b> <sub>spi</sub> | in[ <b>p</b> <sub>recoil</sub> ] = | $= \frac{W[\theta, P] - W[\theta, \frac{1}{W[\theta, P]}] - W[\theta, \frac{1}{W[\theta, P]}] + W[\theta, \frac{1}{W[\theta, P]}]}{\frac{PA_1[P_r]\cos\theta}{1 + cTF_2[P_r]\cos^2\theta}}$ | To extra<br>asymm<br>$-P$ ] $A_1[p_{reco}$<br>Fit for $C$<br>$\overline{\theta}$ moment<br>E.g.: al | act the experime<br>etry<br><sub>511</sub> ],<br>0.5 MeV recoil<br>tum bins:<br>I Kr <sup>+2</sup> data: | ental       |
|                         |                                    | $\begin{array}{c} 0.04 \\ 0.02 \\ \hline \\ $                                                               | $\begin{array}{c c} & & & \\ & & & \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\ \hline \\$  |                                                                                                          |             |
|                         |                                    |                                                                                                                                                                                             | •                                                                                                   |                                                                                                          | ▶ Ξ • • • < |

TRIUMF neutral atom trap: decays

Rb d5/2

#### Distinguishing new tensors from S.M. corrections



Rb d5/2



- Dash: *C<sub>T</sub>*, *C'<sub>T</sub>*, *b*, *d* all float limits not competitive
  Green bar:
  - set  $b/AM_{GT}$ =4.7±4.7, assume  $C_T + C'_T$ =0 (Carnoy <sup>14</sup>O/<sup>10</sup>C 1991)

 $\rightarrow$ 

 $A_T$ = 0.015 ± 0.029 (stat) ± 0.019 (syst) ⇒  $|(C_T - C'_T)/C_A| < 0.36$ R. Pitcairn et al. PRC Jan 2009

• Complementary constraints to tensor couplings to  $\nu_R$  compared to <sup>6</sup>He  $\beta$ - $\nu$  correlation (Johnson ORNL PR 1963)

#### **Improvements?**

tensors

- constrain/measure  $\boldsymbol{b}$  by  $\boldsymbol{A}_{\boldsymbol{\beta}}[\mathbf{p}_{\boldsymbol{\beta}}]$
- Use the higher-polarization methods demonstrated in <sup>37</sup>K
- <sup>82</sup>Rb for consistency
- $\gamma$  coincidence to correct for 1+ $\rightarrow$ 2+
- Could do experiment to 0.001; need nuclear structure theory guidance for

$$\tilde{\mathbf{b}}/\mathbf{A} = \mathbf{g}_{M}\mathbf{M}_{GT} + \langle \mathbf{f} || \sum \tau_{i}^{+} \vec{I} || i \rangle$$
  
$$\mathbf{d}_{I}/\mathbf{A} = \mathbf{g}_{A} \langle \mathbf{f} || \sum \tau_{i}^{+} i \vec{\sigma} \times \vec{I} || i \rangle$$

In Fermi decays or Fermi/Gamow-Teller mirror decays, recoil-order corrections are given by electromagnetic moments: <sup>38</sup>*m*K and <sup>37</sup>K



(日)

#### Exotic particles in isomer decay



- Search for anything massive emitted from nuclear transition
- Independent of interaction in detector or lifetime
- If see a signal, could measure spin from polarized angular distribution

Models exist, but often need 10<sup>-6</sup> sensitivity

# Photoionization scheme

 $^{86m}$ Rb  $\rightarrow {}^{86g}$ Rb neutral atom, 1.9 eV energy. Must photoionize:





A Doppler-free 2-photon transition resolves the daughter <sup>86g</sup>Rb from the trapped <sup>86m</sup>Rb AND excites atoms independent of velocity. Then 1064nm light from a fiber laser photoionizes the atoms

< 口 > < 同

- Technique works, efficiency is not enough
- We see off-resonant ionization of <sup>86m</sup>Rb at about 1/sec

#### 2% I.C. of trapped <sup>86m</sup>Rb: p=920 keV calibration



intro

### $\gamma$ -ray events, laser on/off, 8 hrs

Less than 1 event/min

Background is probably most accidentals Do  $\gamma$ 's ever produce 'shakeoff' e<sup>--</sup>'s?

Lower-velocity case <sup>81</sup>*m*Rb would give more time to photoionize and minimize transit time broadening, sensitivity to 10 keV < m < 80 keV



intro

#### PRELIMINARY High-statistics method on trapped atoms

Could measure hyperfine anomalies in the Rb chain  $I.S._{778} = -34.78 \pm 0.02$  A=  $-1.245 \pm 0.004$  B=  $4.97 \pm 0.16$ 



#### hyperfine anomalies, magnetic octupoles



Fig. 3. Ratio of hyperfine constants normalized by the nuclear g factors showing hyperfine anomaly differences in  $^{85}\text{Rb}$  and  $^{87}\text{Rb}$  based on five different electronic states. The value for the  $65_{1/2}$  (circle) comes from the present measurement. See the text for the other references (squares).

Nez OC 1993 D5/2 is  $0.9955\pm0.0005 \rightarrow C$  magnetic octupole term? Tanner found C=0.56(7) kH in Cs P3/2 PRL 2003. Need few KHz accuracy. We see 100Khz absolute shifts now, though A in 85,87Rb consistent at 20 KHz. Statistical errors demonstrated. Turn off B field, linearly polarized light, more stable MOT and/or larger 778 nm beam, don't dither scanning AOM, linearly polarized light in cell.

< □ > < 同 > < 回 >

J.A. Behr, TRIUMF

#### TRIUMF neutral atom trap: decays



• e<sup>-</sup> not hitting the channels backscatter or produce a secondary that can launch and return with enough energy to trigger MCP • for  $V_{trap} < V_{MCP} < V_{mesh}$ time structures as some scattered e<sup>-</sup>s escape into the mesh region and then return

e<sup>-</sup> MCP timing defects

tensors





- $\beta$ - $\nu$  <sup>38m</sup>K : To measure the recoil momentum spectrum, must understand this timing for the E<sub>e</sub> spectrum produced in the  $\beta$ decay. Big challenge. Will probably concentrate on the  $\beta$ -recoil technique.
- $A_{recoil}$  is OK

#### AC MOT

tensors

We have  $97\pm1\%$  polarization of  $^{37}$ K, but can only chop MOT's B field on and off on 2 msec timescales. Improve:

Harvey and Murray Manchester PRL 101 173201 2008



We want to use for polarized experiments: can switch B fields much faster, so atoms will not expand as much during the optical pumping process.

May also help with expelling dimers (Vetter PRC 77 35502 has identified this as a possibly serious background in  $\beta$ - $\nu$ TRIUM COrrelations with atom traps.) spare slides spares

・ロ・・母・・ヨ・・ヨ・ しょうくの

TRIUMF neutral atom trap: decays



#### Approved as a 'Signature-based general search'

- 0<sup>-</sup> particles favored in Magnetic transitions
- 0<sup>+</sup> favored in Electric transitions (like E4 of <sup>86m</sup>Rb)

Pospelov hep-ph 0811.1030 explanation for PAMELA  $\beta^+$  excess (but no  $\bar{\mathbf{p}}$  excess): SUSY dark matter heavy particle decays via new U(1)' symmetry to massive boson, which then decays. Constraints on its coupling as a function of its mass:



• • • • • • • • • • • •

• Constraints and searches welcome in any mass range. Often need  $10^{-6}$  sensitivity

э

intro

### hyperfine anomaly in <sup>86m</sup>Rb, <sup>86g</sup>Rb

• We can deduce the 5D<sub>5/2</sub> specific mass shift, of atomic structure interest (testing many-body calculations, also for  $\alpha$ [redshift]). Also sharpen long-standing issues with Rb charge radius chain from 5S<sub>1/2</sub> $\rightarrow$ 5P<sub>3/2</sub>

• Precision on  $A_{D5/2} < 4 \text{ KHz} \rightarrow \text{sensitivity to a 'hyperfine}$ anomaly'  $A_{D5/2}/A_{S1/2}$  different by 1% with 3 $\sigma$  accuracy, depending on systematic errors (under evaluation). Sensitive to the spatial distribution of the unpaired nucleons

<sup>85</sup><sub>37</sub>Rb<sup>48</sup>  $5/2^{-} \pi 1f_{5/2}^{-1}$  <sup>87</sup><sub>37</sub>Rb<sup>50</sup>  $3/2^{-} \pi 2p_{3/2}^{-1}$ , full  $\nu 1g_{9/2}$ NNDC/NDS says predominant configurations: <sup>86g</sup>Rb  $2^{-} \pi 1f_{5/2}^{-1} \nu 1g_{9/2}^{-1}$  "<sup>85</sup>Rb+n" <sup>86m</sup>Rb  $6^{-} \pi 2p_{3/2}^{-1} \nu 1g_{9/2}^{-1}$  "<sup>87</sup>Rb-n" Which will have larger valence nucleon radius? <sup>88,89</sup>Rb are possible, along with <sup>76–84</sup>Rb and <sup>90–97</sup>Rb

J.A. Behr, TRIUMF

◆□▶ ◆□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

tensors

# Photoionization Diagnostic $\rightarrow$ cloud position MOT on/off 30 $\mu$ s; Optical pumping off/on to polarize Cloud shifts < 0.03 mm with spin flip $\Rightarrow$ A correction < 0.0012 $\sigma_A$ <0.00005



#### TRIUMF neutral atom trap: decays

J.A. Behr, TRIUMF

#### **TRIUMF-ISAC**

tensors







TRIUMF neutral atom trap: decays

J.A. Behr, TRIUMF

AC MOT

tensors

Rb d5/2

< □ > < 同 >

-

AC MOT

# TOF of $^{80}$ Kr daughter with atomic e<sup>-</sup> trigger



tensors

Rb d5/2

# <sup>80</sup>Rb Polarization diagnostics



TRIUMF neutral atom trap: decays