Neutrino Physics with Cold Atoms

Melissa Jerkins
University of Texas at Austin

Tuesday June 2nd, 2009
Workshop for Atomic Physics on Rare Atoms
Collaborators include Dr. Mark Raizen, Dr. Joshua Klein, Dr. Francis Robicheaux, and Julia Majors
Neutrino Physics with Cold Atoms

What can we learn about neutrinos?

Tritium β-decay:
Has long been a probe of neutrino properties

Atomic Physics:
Recently developed general methods of slowing & cooling

Cold 3H source
Neutrino Mass

Maki-Nakagawa-Sakata matrix

\[
\begin{pmatrix}
\nu_e \\
\nu_\mu \\
\nu_\tau
\end{pmatrix} =
\begin{pmatrix}
U_{e1} & U_{e2} & U_{e3} \\
U_{\mu 1} & U_{\mu 2} & U_{\mu 3} \\
U_{\tau 1} & U_{\tau 2} & U_{\tau 3}
\end{pmatrix}
\times
\begin{pmatrix}
\nu_1 \\
\nu_2 \\
\nu_3
\end{pmatrix}
\]

The probability of flavor change depends on the mass differences between states, not on absolute masses

\[
P(\nu_\mu \rightarrow \nu_e) = \sin^2(2\theta) \sin^2(1.27\Delta m^2 L/E)
\]

Oscillations only provide a lower limit on the \(\nu\)-mass scale!

\[
m_3 \geq \text{sqrt}(|\Delta m_{\text{atm}}^2|) \sim (0.04 - 0.07 \text{ eV})
\]

\[
\Delta m_{21}^2 = \Delta m_{\text{sol}}^2 = 8.0 \times 10^{-5} \text{ eV}^2 \quad \text{(KamLAND)}
\]

\[
\Delta m_{31}^2 \approx \Delta m_{32}^2 = \Delta m_{\text{atm}}^2 = 2.4 \times 10^{-3} \text{ eV}^2 \quad \text{(Super-K)}
\]
Experimental options

Neutrinoless Double Beta Decay Experiments

- Neutrino emitted at one beta decay vertex has to be absorbed by the second decay vertex as an antineutrino

\[m_\nu = \sum |U_{ek}|^2 e^{i\alpha_k} m_k \]

- CUORE plans to reach a limit of 20-50 meV on neutrino mass

- Only possible if neutrinos are massive and Majorana, meaning they are their own antiparticles

- Double beta decay experiments actually measure:

Majorana CP-phases are unknown \(\Rightarrow \) cancellations could occur
Experimental options

Tritium beta decay

\[^3\text{H} \rightarrow ^3\text{He}^+ + e^- + \bar{\nu}_e \]

Half life: \(t_{1/2} = 12.3 \) years
Endpoint energy: \(E_0 = 18.6 \text{ keV} \)

Figure: Osipowicz, A. et al. (KATRIN), arXiv:hep-ex/0109033
Tritium beta decay

Electron energy spectrum of tritium β decay:

$$N(E) = \frac{dN}{dE} = K \times F(E,Z) \times p_e \times E_e \times p_v \times E_v$$

$$= K \times F(E,Z) \times p \times W \times \sqrt{(E_0 - E)^2 - m_v^2} \times (E_0 - E)$$

- m_v^2 = “mass” of the $\bar{\nu}_e = \sum |U_{ei}|^2 m_i^2$
- W = electron total energy
- E_0 = endpoint energy = 18.6 keV
- $F(Z,E)$ = Fermi function, accounting for Coulomb interaction of the outgoing electron in the final state
- $K = G_F^2 \left(\frac{m_e^5}{2\pi^3} \right) \cos^2 \theta_C |M|^2$
Previous Experiments

Troitsk

\[m_v^2 = -1.0 \pm 3.0 \pm 2.5 \text{ eV}^2 \]
\[m_v \leq 2.5 \text{ eV (95\% CL)} \]

Source = Windowless gaseous T\(^2\)

Mainz

\[m_v^2 = -1.6 \pm 2.5 \pm 2.1 \text{ eV}^2 \]
\[m_v \leq 2.2 \text{ eV (95\% CL)} \]

Source = Quench condensed T\(^2\) film on graphite

Limiting Factors:

- Statistics
- Scattering in source
- Backgrounds
- Energy resolution
- Electronic final state effects
- Tritium source uncertainties
Current Experiments

KATRIN

- Scaled-up version of Troitsk experiment
- Low background of $< 10^{-2}$ counts/s is required
- Plans to reach a neutrino mass sensitivity of 0.2 eV after 5-6 years of data taking

- Windowless Gaseous Tritium Source is a 10m long cylinder (80x stronger source)
- Main spectrometer is 23m long and 10m in diameter (4x better energy resolution)
Current Experiments

KATRIN

Monte Carlo spectra:
- Run time = 3 years
- $\Delta E = 1$ eV
- WGTS column density = $5 \times 10^{17}/\text{cm}^2$
- Final state effects included
- Analysis window = 5 eV below endpoint

Is there another approach to directly measuring m_ν?
Magnetic Slowing of Atoms

Slowing and trapping cold atomic tritium would create a new kind of source for tritium β-decay.

- Supersonic nozzle \rightarrow beam of atoms moving at ~ 400 m/s
- Temperature of beam is very cold (~ 50 mK in co-moving frame)
- Tritium can be entrained into the beam and then slowed for trapping

Magnetic Slowing of Atoms

Use pulsed magnetic fields to decelerate tritium atoms

- Zeeman effect: $\Delta E = -\mu \cdot B$
- Low-field seekers are repelled in high field regions and lose kinetic energy

Supersonic beam
Magnetic Slowing of Atoms

Use pulsed magnetic fields to decelerate tritium atoms

- Zeeman effect: $\Delta E = -\mu \cdot B$
- Low-field seekers are repelled in high field regions and lose kinetic energy
Magnetic Slowing of Atoms

Use pulsed magnetic fields to decelerate tritium atoms

- Zeeman effect: \(\Delta E = - \mu \cdot B \)
- Low-field seekers are repelled in high field regions and lose kinetic energy

Can we further cool tritium once we’ve trapped it?

Laser cooling: Highly effective but limited to a small group of atoms

- 1997 Nobel Prize: Chu, Cohen-Tannoudji, Phillips
- Repeated scattering of photons reduces atomic momentum
- Requires a cycling transition
- Hydrogen cannot be laser cooled

Is there a more general cooling method?
Single Photon Cooling

Thought-experiment by Maxwell (1867)
Entropy reduced without expenditure of work

2nd law is saved by information carrying entropy

Szilard (1929)
- Demon makes a measurement
- Information entropy

Demon’s jobs:
- Measure r, p
- Operate gate

Single-photon cooling realizes Maxwell’s demon:
“Demon” discriminates coldest atoms and releases this info in a single scattered photon
Single Photon Cooling

Goal: Transfer atoms from a magnetic to an optical trap via emission of a single photon

- Slowly translate 1-way barrier so that you catch atoms at their classical turning points
- A spontaneous Raman emission could be such a 1-way barrier
- This cooling technique has been demonstrated on 87Rb

Correlation between position and momentum for v_{atom} and v_{demon}

$\sigma > \sigma_{\text{min}}$

\begin{align*}
10^{-1} \text{ cm s}^{-1} & \quad 10^2 \text{ cm s}^{-1}
\end{align*}
Single Photon Cooling

Allows creation of a tritium source with ~μK temperature

- “Demon” = gravito-optical trap + resonant pump beam
- Approach classical turning points slowly from the left
- If final state has weaker or opposite magnetic coupling, atom is trapped in optical trap

\[U = \mu_B g_F m_F |B| + mgz \]
Experimental options

A low-density source of trapped atoms allows the ion to escape as well as the β.

$$^{3}\text{H} \rightarrow ^{3}\text{He}^+ + e^- + \bar{\nu}_e$$

Source density $< 10^{15}$ atoms/cm3
Source column density $< 10^{13}$ atoms/cm2

Figure: Osipowicz, A. et al. (KATRIN), arXiv:hep-ex/0109033
Tritium β-Decay

Direct reconstruction of the neutrino mass!

$$m^2 = (W - E_{\text{ion}} - E_{\beta})^2 - (p_{x_{\text{ion}}} + p_{x_{\beta}})^2 - (p_{y_{\text{ion}}} + p_{y_{\beta}})^2 - (p_{z_{\text{ion}}} + p_{z_{\beta}})^2$$

- Thin source allows ion detection!
- Don’t have to rely only on beta spectrum
- Coincidence measurement \Rightarrow low backgrounds
- Atomic tritium \Rightarrow well-known final state corrections
Direct reconstruction of the neutrino mass!

$m_{\nu}^2 = (W - E_{\text{ion}} - E_\beta)^2 - (p_{x\text{ion}} + p_{x\beta})^2 - (p_{y\text{ion}} + p_{y\beta})^2 - (p_{z\text{ion}} + p_{z\beta})^2$

Ion detector = Microchannel Plate

- θ and ϕ of ion
- TOF for ion

E_{ion} reconstructed from energy conservation

β detector: hemispherical analyzer + optical lattice of Rydberg atoms

E_β $p_{x\beta}$ $p_{y\beta}$

(p_{z\beta} reconstructed from energy conservation)
How do we measure the β’s momentum?

1) Slow β down to < 900 eV after leaving source
2) Cross section for passing β to excite atom from 53s to 53p is: 0.36×10^{-9} cm2
3) When spectrometer detects the β, the 53s atoms are optically de-excited using STIRAP
4) 100 V/cm is ramped to ionize the 53p atoms
5) MCP detects the ionized Rydberg atoms, giving us a 1D track projection of the β’s path
What about background events?

- Collisions ➔ Solved by putting the atoms in an optical lattice
- Blackbody radiation ➔ Solved by surrounding the lattice with a wire mesh whose spacing is small compared to microwave wavelength
- Additionally ➔ Atoms can be periodically cycled between the ground state and the n=53s state to avoid accumulating 53p backgrounds
Tritium β-Decay

Use Rydberg atoms to measure β momentum non-invasively:

Lattice Specifications:
- Density of Rydberg atoms \(\sim 10^{11} \) atoms/cm\(^3\)
- Optical lattice size: 10 cm x 10 cm x 1 cm
- β excites an atom within \(\sim 5 \) microns as it transverses lattice
- Lattice positioned 2 m from the tritium source
- Momentum resolution varies from 40 meV/c to 2.7 eV/c

This non-invasive method may find other applications in the detection of low-energy β’s.
Tritium β-Decay

What about the opening angle uncertainty?

\[\tilde{p}_v \cdot \tilde{p}_v = m_v^2 \quad \tilde{p}_v + \tilde{p}_{\text{ion}} + \tilde{p}_\beta = \tilde{p}_{3\text{H}} \]

\[m_v^2 = \tilde{p}_v \cdot \tilde{p}_v = (\tilde{p}_{3\text{H}} - \tilde{p}_{\text{ion}} - \tilde{p}_\beta) \cdot (\tilde{p}_{3\text{H}} - \tilde{p}_{\text{ion}} - \tilde{p}_\beta) \]

\[m_v^2 = W^2 - 2WE_{\text{ion}} - 2WE_\beta + m_{\text{ion}}^2 + m_\beta^2 + 2|p_{\text{ion}}||p_\beta|\cos\theta \]

\[\delta\theta \frac{\partial m_v^2}{\partial \theta} = -2|p_{\text{ion}}||p_\beta|\sin\theta \quad \sim \delta\theta \sin(\theta)10^{10} \text{ (eV/c)}^2 \]

How do we avert disaster?

- Opening angle is almost \(\pi \), which makes \(\sin\theta \) small
- The uncertainty of the mean goes like \(1/N^{1/2} \)
- \(\delta\theta\sin(\theta)10^{10} \text{ (eV/c)}^2 = 10^{-5}(\sin(\pi-10^{-4}))10^{10} \text{ (eV/c)}^2 = 10 \text{ (eV/c)}^2 \)
Tritium β-Decay

Detector smearings of m_ν^2 peak:

a) No Smearing
b) β Energy Resolution
c) Ion's MCP binning
d) Ion's MCP timing
e) β Momentum Resolution
f) Initial tritium temperature
Tritium β-Decay

ROOT simulation: based on kinematics (no particle tracking)

<table>
<thead>
<tr>
<th>What’s in the simulation?</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• atomic tritium source is 100μm diameter sphere</td>
<td>• Electron momentum resolution of 40 meV/c to 2.7 eV/c</td>
</tr>
<tr>
<td>• Tritium source atoms at 1μK with a Gaussian momentum smear of width mkT</td>
<td>• Geometrical acceptance for the β limited by optical lattice of Rydberg atoms 10 x 10 x 1 cm placed 2m from source</td>
</tr>
<tr>
<td>• Electron TOF Gaussian smear of 20ps</td>
<td>• MCP: 2 micron binning, 44% geometrical acceptance, 15 x 15 cm, placed 5m from source</td>
</tr>
<tr>
<td>• Electron energy resolution of 5 meV</td>
<td>• Ion TOF Gaussian smear of 20ps</td>
</tr>
<tr>
<td>• Final state effects: ground state 70%, 1st excited state 30%</td>
<td>• Gravity correction for the ion ~0.5 microns</td>
</tr>
<tr>
<td>• 1 year assumed runtime</td>
<td></td>
</tr>
</tbody>
</table>
Background test:
• Randomize MCP hits
• Randomize ion TOF
• Leave beta unchanged

10^{-5} background rejection, not including β-coincidence
Coincidence time ~ 3 ms

Magnitude of p_ν is increased 2-3 times, while E_ν changes only slightly $\rightarrow m_\nu$ always reconstructs extremely negative for background events
Tritium β-Decay

- Fit utilizes data up to 500eV away from the endpoint energy
- Minuit log-likelihood fit using 2D probability density functions (pdf)
- Find m_ν by interpolating between pdfs of different neutrino masses

Statistics gained by moving far from the endpoint improve precision on m_ν even though the spread in reconstructed mass gets broader.
Tritium β-Decay

Results of a pull distribution of the neutrino mass fit results are consistent with a normal Gaussian.

<table>
<thead>
<tr>
<th>Assumed m_ν (eV)</th>
<th>Fit m_ν</th>
<th>(+) error</th>
<th>(-) error</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.2</td>
<td>0.239</td>
<td>0.174</td>
<td>0.153</td>
</tr>
<tr>
<td>0.4</td>
<td>0.354</td>
<td>0.166</td>
<td>0.150</td>
</tr>
<tr>
<td>0.6</td>
<td>0.690</td>
<td>0.270</td>
<td>0.203</td>
</tr>
<tr>
<td>0.8</td>
<td>0.794</td>
<td>0.247</td>
<td>0.215</td>
</tr>
<tr>
<td>1.0</td>
<td>0.813</td>
<td>0.246</td>
<td>0.207</td>
</tr>
<tr>
<td>5.0</td>
<td>5.188</td>
<td>0.402</td>
<td>0.378</td>
</tr>
</tbody>
</table>
Tritium β-Decay

What are the strengths of this technique?

- Extremely thin source \rightarrow low scattering
- Atomic tritium \rightarrow simpler final state effects
- β coincidence \rightarrow low backgrounds
- Direct m_ν reconstruction & β-spectrum
- Trap lifetimes of 5-10 minutes with cryogenic cold fingers and chamber bake-out
- Optical lattice of Rydberg atoms could be placed to aid in distinguishing sources for reconstruction

Trapping 2×10^{13} tritium atoms:

- Stack sources along a line by repeated launching & trapping
- Trap lifetimes of 5-10 minutes with cryogenic cold fingers and chamber bake-out
- Valid for Dirac and Majorana neutrinos

Results of fit to simulated data in which $m_\nu=0.4$ eV

- $m_\nu = 0.473^{+3.72}_{-1.35}$ eV
- $m_\nu = 0.425^{+0.585}_{-0.438}$ eV
- $m_\nu = 0.354^{+0.166}_{-0.150}$ eV

fit results for neutrino mass (eV)

number of beta decays

10^{10} 10^{11} 10^{12}
Conclusions

Slowing and trapping cold 3H atoms \rightarrow Fundamentally new way of measuring m_ν

• General slowing, trapping, & cooling methods present new opportunities
• Working towards the first atomic source ever utilized in tritium beta decay
• Rydberg atoms offer an innovative non-invasive momentum measurement technique
• Our proposed experiment could compete with KATRIN’s goal of limiting $m_\nu < 0.2$ eV

Special Thanks

Mark Raizen
Josh Klein
Francis Robicheaux
Julia Majors
Ed Narevicius
Neutrino Mass

• Are neutrino masses hierarchical or degenerate?
• Are neutrinos Dirac or Majorana particles?
• Why are neutrino masses so relatively small?

![Diagram showing mass hierarchy and oscillation](image)

- Increasing Mass: 100,000 X mass of electron
- Neutrinos vs. Quarks
- Charged leptons

Hierarchical Scenarios

Degenerate Scenarios

- $\Delta m^2_{\text{solar}}$
- $\Delta m^2_{\text{atmos}}$

- m_{ν_e}, m_{ν_μ}, m_{ν_τ}
Neutrino Mass

Cosmology

- Neutrinos = hot dark matter in the early universe

- Energy density parameter Ω of the universe:
 Experimental limits: $\Omega_\nu = 0.003 - 0.25$

- Fits for m_ν depend sensitively on other cosmological parameters

WMAP data has been fit with cosmological models that estimate $\sum m_\nu \leq 0.6 \text{ eV}$
Experimental options

Tritium beta decay

What about neutrino mixing?

\[N(E) = \frac{dN}{dE} = K \times F(E,Z) \times p \times E \times \sqrt{(E_0 - E)^2 - m^2} \times (E_0 - E) \]

\[|U_{ei}|^2 = |\langle \nu_e | \nu_i \rangle|^2 \]

\[m_\nu^2 = \text{“mass” of the electron (anti-)neutrino} = \sum |U_{ei}|^2 m_i^2 \]

The measured neutrino mass from tritium beta decay would fix the absolute neutrino mass scale in a degenerate model.

Double beta decay experiments actually measure: \[m_\nu = \left| \sum |U_{ek}|^2 e^{i\alpha_k} m_k \right| \]

Majorana CP-phases are unknown \(\Rightarrow\) cancellations could occur.
Previous Experiments

ITEP
- T_2 in complex molecule
- magn. spectrometer (Tret'yakov)
- $m_V = 17-40 \text{ eV}$

Los Alamos
- gaseous T_2 - source
- magn. spectrometer (Tret'yakov)
- $m_V = < 9.3 \text{ eV}$

Tokio
- T - source
- magn. spectrometer (Tret'yakov)
- $m_V = < 13.1 \text{ eV}$

Livermore
- gaseous T_2 - source
- magn. spectrometer (Tret'yakov)
- $m_V = < 7.0 \text{ eV}$

Zürich
- T_2 - source impl. on carrier
- magn. spectrometer (Tret'yakov)
- $m_V = < 11.7 \text{ eV}$

Troitsk (1994-today)
- gaseous T_2 - source
- electrostat. spectrometer
- $m_V = < 2.5 \text{ eV}$

Mainz (1994-today)
- frozen T_2 - source
- electrostat. spectrometer
- $m_V = < 2.2 \text{ eV}$
Previous Experiments

Troitsk and Mainz

- Obtained m_ν by fitting the beta spectrum
- Parameters were m_ν, endpoint energy, background, and normalization
Previous Experiments

Troitsk and Mainz: $m_\nu < 2.2$ eV

Limiting Factors:

- Statistics
- Scattering in source
- Backgrounds
- Energy resolution
- Electronic final state effects
- Tritium source uncertainties
Previous Experiments

Troitsk & Mainz breakthrough technology: MAC-E-Filter

Guiding by magnetic fields (magnetic adiabatic collimation)

$$\Delta \Omega \sim 2 \pi$$

Electric (retarding-) field:

analysis of electron energies (electrostatic filter)

integral transmission: $E > U_0$

$$\mathbf{F} = (\mathbf{\mu} \cdot \mathbf{v}) \mathbf{B} + q \mathbf{E}$$

$$\mathbf{\mu} = \frac{E_{\perp}}{B} = \text{const}$$

Adiabatic motion

Adiabatic transformation $E_{\perp} \rightarrow E_{\parallel}$
KATRIN

- Factor of 4 improvement in energy resolution over Troitsk and Mainz
- Increased T_2 source strength (factor 80)
- Low background of 10^{-2} counts/s or less is required
- Reduced inelastic scattering events to 2% of signal rate by looking only at the last 25 eV below the endpoint
- Pre-spectrometer rejects all electrons except those close to the endpoint, reducing the count rate to ~ 1000/s

Sensitivity (90% CL)
$m_\nu < 0.2$ eV

Discovery (95% CL)
$m_\nu < 0.35$ eV
Current Experiments

KATRIN:
Karlsruhe Tritium Neutrino Experiment

- External β-source (3H)
- 3H endpoint = 18.6 keV
- 3H half-life = 12.3 years
- Energy: electrostatic spectrometer
 - Measures kinetic energy of β
 - Narrow interval close to E_o
 - Integrated β-energy spectrum
 - Integral design, size limits
 - $\Delta E_{\text{expected}} = 0.93$ eV

MARE:
Microcalorimeter Arrays for a Rhenium Experiment

- β-source = detector (187Re)
- 187Re endpoint = 2.6 keV
- 187Re half-life = 5×10^{10} years
- Energy: single crystal bolometer
 - Measure entire decay energy
 - Measure entire spectrum
 - Differential β-energy spectrum
 - Modular size, expandable
 - $\Delta E_{\text{expected}} \approx 5$ eV (FWHM)

Is there another approach to directly measuring m_ν?
Single Photon Cooling

Allows creation of a tritium source with ~μK temperature

- “Demon” = gravito-optical trap + resonant pump beam
- Approach classical turning points slowly from the left
- If final state has weaker or opposite magnetic coupling, atom is trapped in optical trap

\[U = \mu_B g_F m_F |B| + mgz \]
Tritium β-Decay: 3-Body

PHOIBOS hemispherical analyzer 225 HV

- 15 keV energy
- Small geometrical acceptance
- Potential calibration source: $^{83\text{m}}$Kr conversion electron with energy of 17.8 keV and width of 2.7 eV
Tritium β-Decay: 3-Body

Burle 2-micron MCP detector

- Detects position and time-of-flight (TOF)
- 2 micron holes spaced 3 microns center-to-center
- 350 ps pulse width resolution

We need:
- 2-10 μm spacing
- ~20ps timing
- Large area: ~ 1m wide x 20cm tall
Boundstate β-Decay: 2-Body

$^3\text{H} \rightarrow ^3\text{He} + \nu_e$

$\nu_{\text{Recoil}} = \left[\frac{(M_{^3\text{H}} - M_{^3\text{He}})^2 - (m_{\nu} c^2)^2}{M_{^3\text{He}} c} \right]^{1/2}$

- Measure ^3He recoil velocity
- 0.69% of all ^3H decays are boundstate
- 3% of boundstate He3 atoms are in an excited state and emit a 706.52nm photon
Boundstate β-Decay: 2-Body

$^3\text{H} \rightarrow ^3\text{He} + \nu_e$

$$v_{\text{Recoil}} = \left[\frac{(M_{^3\text{H}} - M_{^3\text{He}})^2 - (m_{\nu} c^2)^2}{M_{^3\text{He}} c} \right]^{1/2}$$

- Measure ^3He recoil velocity
- 0.69% of all ^3H decays are boundstate
- 3% of boundstate He^3 atoms are in an excited state and emit a 706.52nm photon

Detect photon from ^3He atom & ^3He TOF to MCP
Boundstate β-Decay: 2-Body

Boundstate beta decay does not currently offer a competitive limit on m_ν.

- Given sufficient statistics, the fit is very accurate
- But even with 10^{13} decays, the 90%CL is only 8.8eV

Simulation $m_\nu=20\text{eV}$, Fit $m_\nu=19.6\text{eV}$
Mössbauer Neutrinos: 1-Body

Ordinary Mossbauer effect: photons emitted recoillessly by one nucleus can be resonantly absorbed by another nucleus of the same type.

Nuclei must be bound in a lattice for significant recoilless emission or absorption.
Mössbauer Neutrinos: 1-Body

\[\nu\text{'s emitted recoillessly from boundstate decay of } ^3\text{H can be resonantly absorbed by } ^3\text{He} \]

\[^3\text{H} \rightarrow ^3\text{He} + \bar{\nu}_e \]

Boundstate tritium beta decay:

Reverse tritium beta decay:

\[\bar{\nu}_e + ^3\text{He} \rightarrow ^3\text{H} \]
Mössbauer Neutrinos: 1-Body

Debye temperature = temperature of a crystal's highest normal mode of vibration

\[f_{	ext{recoilless}} = \exp\left\{ \frac{-E^2}{2Mc^2} \times \frac{3}{2k_B \theta_D} \right\} \]

where \(\theta_D \) is the Debye temperature

We can get a very high Debye temperature by going to high pressures

![Debye Temperature vs. Pressure for solid He3](image-url)
Mössbauer Neutrinos: 1-Body

- High pressures raise the Debye temperature, which increases $f_{\text{recoilless}}$
- Volume not likely to exceed 0.004cm^3

2 Diamond Anvil Cells placed ~1-4cm apart

^3He detector @10GPa
$V = 0.004\text{cm}^3$

T_2 source @10GPa
Source ~29Cu
Mössbauer Neutrinos: 1-Body

Tuning the pressure allows us to align emission & absorption peaks!

\[\sigma_{\text{resonant}} = 4.18 \times 10^{-41} g_o^2 \rho (E_{\text{res}}) / \sqrt{\tau} \approx 10^{-32} \text{cm}^2 \]

(assuming linewidth \(\sim 10^{-12} \text{eV} \))

- Linewidth dominated by inhomogeneous broadening (impurities, lattice defects, etc.)
- Narrow linewidth implies we must be able to tune energy shifts to observe resonance
- Very cold temperatures reduce Doppler shifts
- Isomer shift (from changes in atomic radius) can be canceled by zero-point energy shift:

\[\Delta E/E = \left(\frac{9k_B}{16Mc^2} \right) (\theta_{\text{emitter}} - \theta_{\text{absorber}}) \]
Mössbauer Neutrinos: 1-Body

We estimate a Debye temperature of ~700K
Simulation results: ~31755 events per week

Event rate vs. Pressure (assuming a DAC volume of 0.004cm3)

Debye temp = 900 K
Mössbauer Neutrinos: 1-Body

But how do you detect the tritium in the helium-3 absorber?

- Magnetic slowing enables trace element detection so we can actually detect the 3H in the 3He absorber! (~1/1000 detection efficiency)

Physics motivation:
- θ_{13} measurement from rates taken at distances 1cm-10m

\[P(\nu_\alpha \to \nu_\beta) = \sin^2(2\theta)\sin^2(1.27\Delta m^2 L/E) \]

A large L is unnecessary if E=18.6keV