

NSCL at Michigan State University - University of Michigan Center for Theoretical Physics Workshop on Atomic Physics with Rare Atoms

June 1-3, 2009

Physics at the TRImP Facility of KV

Klaus Jungmann, KVI, University of Groningen

- KVI and its Research
- Fundamental Symmetries and Forces
 - Searches for New Interactions
 - Standard Model and Extensions
 - Precision Experiments
 - Novel Techniques
- TRIµP Facility @ KVI
- \Rightarrow Some Examples only
 - Discrete Symmetries C, P, T, CP, CPT
 - Nuclear β-decays
 - EDMs
 - Parity Violation
 - Applications

KVI and its Research

- Fundamental Symmetries and Forces
 - Searches for New Interactions
 - Standard Model and Extensions
 - Precision Experiments
 - Novel Techniques
- TRIµP Facility @ KVI
- \Rightarrow Some Examples only
 - Discrete Symmetries C, P, T, CP, CPT
 - Nuclear β-decays
 - EDMs
 - Parity Violation
 - Applications

Kernfysisch Versneller Instituut Groningen

I. Atomic and Sub-Atomic Physics: Fundamental Forces and Symmetries II. Applications of developed tools and metods Radiation – Matter interactions.

AGOR

• KVI and its Research

Fundamental Symmetries and Forces

- Searches for New Interactions
- Standard Model and Extensions
- Precision Experiments
- Novel Techniques
- TRIµP Facility @ KVI
- \Rightarrow Some Examples only
 - Discrete Symmetries C, P, T, CP, CPT
 - Nuclear β-decays
 - EDMs
 - Parity Violation
 - Applications

⇒ No Status in Physics , yet: "Not Even Wrong"

Experiments at the Frontiers of Standard Theory

Direct Search Frontier

complementary approaches

Precision Frontier

university of groningen

TRIµP Physics Programme

T – violation: β-decay ²¹Na, 'a' & 'D' coefficients

TRIµP original EU R&D

Weak Interactions

Projectruimte: GO & RGET

- KVI and its Research
- Fundamental Symmetries and Forces
 - Searches for New Interactions
 - Standard Model and Extensions
 - Precision Experiments
 - Novel Techniques

• TRIµP Facility @ KVI

- \Rightarrow Some Examples only
 - Discrete Symmetries C, P, T, CP, CPT
 - Nuclear β-decays
 - EDMs
 - Parity Violation
 - Applications

Trapped Radioactive Isotopes – µicrolaboratories for fundamental Physics

university of groningen

Atomic Physics

university of groningen

TRIμΡ

5

Separator

Yield of ²¹Na at the focal plane: 3.10⁶/100 W {@ 1 atm H₂}

Other isotopes produced: ⁸B,¹²N, ¹²B, ¹⁹Ne, ²⁰Na, ²²Mg, ⁴²Ti,²¹²⁻²¹⁴Ra

First Completed Experiment

	¹² B decay				¹² 1	_		
	B.R. (%)	$\log(ft)$	E (MeV)	$\Gamma (\text{keV})$	J^{π}, T	$\log(ft)$	B.R. (%)	
	97.22(30)	4.066(2)	g.s.	-	$0^+; 0$	4.120(3)	94.55(60)	_
98.16(4)	1.201(17)	5.136(6)	4.43891(31)	$10.8(6) \times 10^{-6}$	$2^+; 0$	5.149(7)	1.898(32)	96.20(10)
	1.3(4)						2.2(6)	_ 、 ,
	1.7(5)	4.13(9)	7.6542(15)	$8.5(10) \times 10^{-3}$	$0^+; 0$	4.34(6)	3.0(5)	
0 $E_{2}(2)$	1.5(3)						$\overline{2.7(4)}$	1 26(6)
0.53(3)	0.13(4)						0.85(6)	- 1.20(0)
	0.07(2)	4.2(2)	10.3(3)	3000(700)	$(0^+,2^+); 0$	4.36(17)	0.44(16)	
0.106(5)	$\overline{0.08(2)}$						0.46(15)	0.52(3)
	?		12.710(6)	$18.1(28) \times 10^{-3}$	$1^+; 0$	3.52(14)	0.31(12)	- 0.02(0)
2 95(15)	 /10		15.110(3)	$43.6(13) \times 10^{-3}$	$1^+; 1$	3.30(13)	$4.4(15) \times 10^{-3}$	0 119(6)
								-0.10(0)

4

TRIµP

H. Fynbo (DK) *et al.*: quantitative implantation in active zone of semiconductor @ KVI

Precise v spectrum of ⁸B R. Raabe (F) *et al.*

Method:

- Stopping ⁸B in pixel detector
- Measuring of 2 α spectrum from tagged pixel
- Best data on tape

Lifetimes of Relevance for β-decay and CKM Tests

A typical decay spectrum of ²¹Na Implantation time 65 s and counting time 165 s.

A typical decay spectrum of ³⁷K Implantation time 2.5 s and counting time 15 s.

TRIμP

¹⁹Ne, ²¹Na, ³⁷K – work in progress using new Tape device,

A. Young (USA), H. Wilschut et al.(2009)

Lifetimes in Mirror Nuclei

university of groningen

TRIµP Ion Catcher

Gas stopper - a generic solution not appropriate

KVI novel development: High efficiency for alkali and alkali earth isotopes → Thermal Ionizer

TRIμP

Decay, Diffusion, Effusion Thermal Ionizer

university of groningen

Thermal Ionizer Extraction 'on' – 'off' Switching: Ra isotopes Lifetimes

TRIμP

TRIμΡ

Trapped Radioactive ²¹Na

Maximum reached: >10⁵/s in trap cell
Final goal to trap >10⁴/s

- KVI and its Research
- Fundamental Symmetries and Forces
 - Searches for New Interactions
 - Standard Model and Extensions
 - Precision Experiments
 - Novel Techniques
- TRIµP Facility @ KVI
- \Rightarrow Some Examples only

• Discrete Symmetries C, P, T, CP, CPT

- Nuclear β-decays
- EDMs
- Parity Violation
- Applications

Example: β-Decays

Hans Wilschut et al. \rightarrow Natrium Isotopes

New Interactions in Nuclear β-Decay

TRIµP

recoil

university of groningen

New Interactions in Nuclear β-Decay

In Standard Model: Weak Interaction is V-A

In general β-decay could be also S, P, T

$$\frac{\mathrm{d}^{2}W}{\mathrm{d}\Omega_{e}\mathrm{d}\Omega_{\nu}} \sim 1 \cdot \mathbf{a} \frac{\mathbf{p} \cdot \hat{\mathbf{q}}}{E} + b\Gamma \frac{m_{e}}{E} \\ + \langle \mathbf{J} \rangle \cdot \left[A \frac{\mathbf{p}}{E} + B \hat{\mathbf{q}} + D \frac{\mathbf{p} \times \hat{\mathbf{q}}}{E} \right] \\ + \langle \mathbf{\sigma} \rangle \cdot \left[G \frac{\mathbf{p}}{E} + Q \langle \mathbf{J} \rangle + R \langle \mathbf{J} \rangle \times \frac{\mathbf{p}}{E} \right]$$

TRIµP

TRIμP

Detection: MOT + RIMS + β detector

TRIµP

$\beta - \nu$ Asymmetry "a" Measurements @ KVI

Reaction Microscope Resolution

 $\Delta E = 1 \text{ meV}$

groningen

in Ion-Na charge transfer reactions $\Delta v = 3 \text{ m/s}$ university of

Position Sensitive Scintillation b-counter

New Interactions in Nuclear β-Decay

In Standard Model: Weak Interaction is V-A

TRIμΡ

In general b-decay could be also S, P, T

- *R* and *D* test both Time Reversal Violation
 - $D \rightarrow most potential$
 - $\mathbf{R} \rightarrow \text{scalar and tensor}$ (EDM, *a*)
 - technique D measurements yield a, A, b, B

Example: Permanent Electric Dipole Moments

Lorenz Willmann et al. \rightarrow Radium Atom Gerco Onderwater et al. \rightarrow Deuteron

Limit on EDM in Time

EDM Limits as of summer 2007

			Possible
Particle	Exp. Limit	SM	New Physics
	[10 ⁻²⁷ e cm]	[factor to go]	[factor to go]
e (Tl)	< 1.6	10 ¹¹	≤1
μ	$< 1.05 * 10^{9}$	10 ⁸	≤ 200
τ	$< 3.1 * 10^{11}$	10⁷	≤ 1700
n	< 30	10⁴	≤ 30
Tl (odd p)	< 10 ⁵	10⁷	$\leq 10^5$
Hg (odd n)	< 0.031	10⁴	various

- Why so many ?
- Which is THE BEST candidate to choose ?

None is THE BEST - We need many experiments!

TRIμΡ

Possible Sources of EDMs

The best experiment until now-¹⁹⁹Hg @Seattle – leaves SUSY very little room ...

Generic EDM Experiment

TRIμP

Generic EDM Experiment Sensitivity

- \Rightarrow Work on
 - high Polarization , high Field
 - high Efficiency
 - long Coherence Time
- ⇒ one day gives more statistics than needed to reach previous experimental limits

TRIμP

Why Radium?

Atomic energy level diagram of Ra

university of groningen

J. Engel et al. Phys. Rev. C, 68, 025501 (2003)

Big Step: Efficient Trapping of Barium Atoms

S. De et al., Phys. Rev. A 79, 041402(R) (2009)

Laser Fluorescence from Radium

TRIμΡ

Radium cooling transition

university of groningen

TRIµP Permanent Electric Dipole Moment in a Ring

Lower Detector

TRIµP Permanent Electric Dipole Moment in a Ring

Spin precession in (electro-) magnetic field

$$ec{\omega} = rac{e}{m} \left[\mathbf{a}_{\mu} ec{\mathbf{B}} - \left(\mathbf{a}_{\mu} - rac{1}{\gamma^2 - 1}
ight) rac{ec{eta} imes ec{\mathbf{E}}}{\mathbf{c}}
ight] + rac{\mathbf{e}}{\mathbf{m}} \left[rac{\eta}{2} \left(rac{ec{\mathbf{E}}}{\mathbf{c}} + ec{eta} imes ec{\mathbf{B}}
ight)
ight]$$

Deuteron is stable: Different polarimeter needed

TRIμΡ

Searches for EDMs in charged particles: Novel Method invented Motional Electric Fields exploited

International Collaboration (USA, Russia, Japan, Italy, Germany, NL, ...)

- possible sites discussed: BNL, KVI, Frascati, …
- Limit d_D <10⁻²⁷ ...10⁻²⁹ e cm
- Can be >10 times more sensitive than neutron $d_{n,}$ best test for Θ_{QCD} , ...

C.P. Liu, R.G.E. Timmermans Phys.Rev.C 70, 055501 (2004

Parity Violation in Single Ions

Klaus Jungmann Rob Timmermans et al.

- Parity admixture measured through light shift
- Ra⁺ some 20 times bigger effects than Ba⁺
- Ground breaking work at Seattle

TRIμΡ

Atomic Parity Violation in Ra⁺ Interference of E2/E1^{APV}

Determination of Weak Mixing Angle

Average: $\sin^2 \theta_w = 0.23122(17)$

TRIμP

Summary

> KVI Research addresses

- Fundamental Interactions and Symmetries and
- Applications
- At Home and with Strategic Partners

> The TRIµP Facility

- Stands Ready and
- Open for Users now to
- Study Fundamental Symmetries and Forces in Nature

Thank YOU !

Production results

Product For		/s/pnA	Beam	[MeV/u]	Reacti	Target	
²¹ Na	commiss.		²¹ Ne	20	(p , n)		CH ₂
²¹ Na	commiss.		²⁴ Mg	30	(p ,α)		CH ₂
²¹ Na	commiss.		²⁴ Mg	30		fragment	С
¹² B	Fynbo		¹¹ B	22.3	(d , p)	direct	D ₂
¹² N	Fynbo		¹² C	22.3	(p , n)	resonant	H ₂
¹⁹ Ne	TUNL	1.1×10 ³	19 F	10	(p , n)	resonant	H ₂
²⁰ Na	TRI <i>µ</i> P	1.0×10 ⁴	²⁰ Ne	22.3	(p , n)	resonant	H ₂
²¹ Na	LPC	3×10 ³	²¹ Ne	43	(p , n)	direct	H ₂
²¹ Na	TRI <i>µ</i> P	1.3×10 ⁴	²⁰ Ne	22.3	(d , n)	direct	D ₂
²¹ Na	TRI µP	8×10 ³	²⁰ Ne	40.0	(d , n)	direct	D ₂
²² Mg	LPC		²³ Na	31.5	(p ,2 n)	evap.	H ₂
⁴² Ti	Blank	20	⁴⁰ Ca	45.0	(³ He,n)	direct	³ He
⁸ B	Raabe	5	¹² C	30.0		fragment	¹² C
²¹³ Ra	TRI <i>µ</i> P	600	²⁰⁶ Pb	8.0	(¹² C,5n)	Fus-evap.	¹² C
²¹⁴ Ra	TRI µP	300	²⁰⁶ Pb	8.0	(¹² C,4n)	Fus-evap.	¹² C
²¹² Ra	TRIμP	200	²⁰⁶ Pb	8.0	(¹² C,6n)	Fus-evap.	¹² C

university of groningen

Dedicactiva