

Towards the study of heavy elements with resonance ionization spectroscopy at IGISOL

Iain Moore

University of Jyväskylä, Finland

JYFL

IGISOL – a brief introduction

Motivation: spectroscopy of bismuth and uranium (thorium)

Experimental efforts

> Outlook

Ion guide principle: a universal production method

More advanced gas catchers ⓒ dc fields

- © rf carpets, funnels and walls
- © cryogenic temperatures
- © selective laser ionization
- \otimes molecular formation
- \otimes space charge, recombination

- Based on the survival of primary ions in helium buffer gas
- Charge state concentration: (0), +1 (+2)
- Fast gas flow required to prevent neutralization
- Produces ions of any element

J. Ärje et al., Phys. Rev. Lett. 54 (1985) 99

> IGISOL – a brief introduction

Motivation: spectroscopy of bismuth and uranium (thorium)

> Experimental efforts

Outlook

Nuclear ground state properties...

... by atomic spectroscopy

Isotope Shift (IS)

Hyperfine Structure (HFS)

Mean Square Charge Radii

$$\delta \langle r^2 \rangle^{AA'}$$

Nuclear Spin *I* Magnetic Dipole Moment μ_I Electric Quadrupole Moment Q_s Hyperfine Anomaly

Sample preparation is crucial.

Nuclear reaction products must be slowed and thermalized quickly, efficiently, universally and selectively.

Special nuclear interest in the heavier systems...

Factors controlling $\delta < r^2 >$

JYFL

Nuclear physics: the \delta < r^2 > landscape

JŸŶĹ

Laser spectroscopy of multi-quasiparticle isomers

$A \backslash Y$	Ι	$\mu~(\mu_{\rm N})$	$Q_{\rm s}~({\rm b})$	Q_0 (b)	$\delta \langle r^2 \rangle^{97 \mathrm{m}1, \mathrm{J}}$
97 ^{m1}	$\frac{9}{2}$	+5.88(2)	-0.76(8)	-1.40(15)	
97^{m2}	$\left(\frac{27}{2}\right)$	+5.64(3)	-1.21(14)	-1.50(17)	-0.098(1)
$A \setminus Cs$	Ι	$\mu~(\mu_{\rm N})$	$Q_{\rm s}$ (b)	Q_0 (b)	$\delta \langle r^2 \rangle^{135 \mathrm{g},A}$
135 ^g	$\frac{7}{2}$	+2.73(1)	+0.03(2)	~ 0	
$135^{\mathbf{m}}$	$\frac{19}{2}$	+2.18(1)	+0.89(7)	+1.20(9)	-0.0081(13)
$A \backslash \mathrm{Ba}$	Ι	$\mu~(\mu_{\rm N})$	$Q_{\rm s}$ (b)	Q_0 (b)	$\delta \langle r^2 \rangle^{130 {\rm g}, A}$
130^{g}	0			+3.419(24)	
$130^{\mathbf{m}}$	8	-0.043(28)	+2.77(30)	+3.95(43)	-0.0473(30)
$A \backslash \mathrm{Yb}$	Ι	$\mu~(\mu_{\rm N})$	$Q_{\rm s}~({\rm b})$	Q_0 (b)	$\delta \langle r^2 \rangle^{176 {\rm g},A}$
176^{g}	0			+7.30(13)	
176^{m}	8	-0.151(15)	+5.30(8)	+7.55(11)	-0.0224(1)
$A \setminus Lu$	Ι	μ ($\mu_{\rm N}$)	$Q_{\mathbf{s}}(\mathbf{b})$	Q_0 (b)	$\delta \langle r^2 \rangle^{177 \mathrm{g}, A}$
177^{g}	$\frac{7}{2}$	+2.239(7)	+3.39(3)	+7.26(6)	
177^{m}	$\frac{23}{2}$	+2.308(11)	+5.71(5)	+7.33(6)	-0.035(<1)
$A \setminus \mathrm{Hf}$	Ι	μ ($\mu_{\rm N}$)	$Q_{\rm s}$ (b)	Q_0 (b)	$\delta \langle r^2 \rangle^{178 \mathrm{g},A}$
178^{g}	0			+6.961(43)	
178^{m1}	8	+3.10(1)	+4.99(4)	+7.11(6)	-0.0384(1)
	4.0	$\pm 8.16(4)$	+6.00(7)	+7.20(8)	-0.0873(20)

M.L. Bissel et al., Phys. Lett. B 645 (2007) 330

Only 6 such isomeric systems have been measured so far. All show decreases in mean-square charge radii despite increases in Q_0 .

Why?

Reduction in surface diffuseness σ (loss of pairing) ?

One possibility is to measure spherical multi-quasiparticle isomers

²⁰⁷Bi (21/2⁺, 182 μs)
²⁰⁴Bi (10⁻, 13 ms)
²⁰⁴Bi (17⁺, 1.07 ms)

The lifetimes of these systems become challenging to collinear laser spectroscopy, move to in-source spectroscopy.

Spectroscopy on n-deficient U isotopes

P.A. Butler and W. Nazarewicz, Nucl. Phys. A533 (1991) 249

JYFL

Motivation:

Uranium isotopes with N=132,134 should have deepest PE surface minimum for non-zero octupole deformation.

Figure kindly provided by L. Robledo, Madrid

Earlier studies on Rn, Ra at ISOLDE (1980's)

$$< r^{2} > = < r^{2} >_{sph} (1 + \frac{5}{4\pi} (< \beta_{2}^{2} > + < \beta_{3}^{2} > + ...))$$

> Inclusion of octupole deformation effects improves consistency of $\delta < r^2 >$

Inversion of odd-even staggering (OES) (very unusual) between A=220-226. Connected to octupole degree of freedom suggested – where reflection-asymmetric shapes are predicted!

© ²²⁵Ra is an attractive case for searches of the atomic EDM due to the enhancement effect from the nuclear octupole deformation.

S.A. Ahmad et al., Nuc. Phys. A483 (1988) 244 (Ra)

W. Borchers *et al.*, Hyp. Int. 34 (1987) 25 (Rn)

JYFL

n) W. Kälber *et al.*, Z. Phys. A 334 (1989) 103 (Th)

"Complete" spectroscopy is needed

Figures reproduced with kind permission from P. Rahkila

JŶŶĹ

> IGISOL – a brief introduction

Motivation: spectroscopy of bismuth and uranium (thorium)

Experimental efforts

Outlook

Principle of resonant laser ionization

JŶŶĹ

Operational at JYFL, Mainz and Triumf, Vancouver

JŸŶĹ

Versatility of solid-state laser system

JŶŶĹ

First tests on stable Ni using RIS in a gas cell (2009)

JYFL

Bismuth: illustrating the challenges in-source

JŶŶĹ

Resolution limitations

Ideal case: Doppler-free spectroscopy in vacuum (CW first step)

Pulsed dye laser first step (4 GHz linewidth)

JYFL

In the ion guide: 100 mbar He gas doppler broadening ~800 MHz, pressure broadening ~500 MHz

I.D. Moore et al., Hyp. Int. 171 (2007) 135 B. Tordoff, PhD Thesis, University of Manchester (2007).

ISOLDE: demonstration of hot cavity RIS

JŸFL

In-gas cell spectroscopy of ^{57,59}Cu at LISOL

JŶŶĹ

Workshop on Atomic Physics with Ra Frequency [GHz] ;an, June 1-3

Hot cavity vs gas cell: in-source spectroscopy

JYFL

Principle of LIST method (Laser Ion Source Trap)

MOTIVATION:

"to achieve the highest selectivity for radioactive ion beam production"

LIST principle also to be applied at ISOLDE and the hot cavity ion source

Demonstration of RIS in LIST mode – ²⁰⁹Bi

JŸŶĹ

Further development: narrow linewidth pulsed Ti:Sa

Count rate (s⁻¹

Injection seeding of a pulsed Ti:Sapphire laser. Results in a linewidth reduction from ~4 GHz to ~20 MHz

Residual FWHM of 145 MHz of the hyperfine components explained by a combination of Doppler (~100 MHz) and power boadening 33 MHz.

T. Kessler et al., Laser Physics 18 (2008) 1.

Production and RIS of uranium

JYFL

Rare ²³¹Pa (t_{1/2}~3×10⁴ a) targets exist. High cross sections (100's mb) for (p,xn), (d,xn) reactions
 Utilize new shadow gas cell concept (Leuven development)

Combining the high resolution nature of the collinear beams method with the high sensitivity of the in-source technique.

Extraction of B factors and hence quadrupole moments – search for a deviation which may indicate octupole deformation.

JYFL

Outlook

HAVE ALREADY SKIED

537 KH THIS WINTER

- We have many open questions to be answered that lie at the borders of atomic and nuclear physics.
- A complete approach should be taken to view the problem from different angles.
- Developing new tools and techniques take time but are rewarding.

ЪЙ Вй

Detection of the illusive isomeric state in ²²⁹Th

Motivation: detection of the lowest lying isomeric state which has yet to be confirmed following 3 decades of experiment and theory.

B.R. Beck et al., PRL 98 (2007) 142501

- NASA/EBIT x-ray microcalorimeter spectrometer: E (²²⁹Th^m) = 7.6±0.5 eV
- Most recent half-life range: $1 \min \le T_{1/2}^{m} \le 3 \min (PRC 79 (2009)$ 034313)
- Experimental studies include:
- Closed cycle of γ ray energies
- Direct reaction work, ²³⁰Th(d,t)²²⁹Th
- Detection via optical measurements
- Radiochemical techniques
- Feasibility studies of NEET process

Why is there such an interest?

> A unique system to investigate atomic – nuclear couplings

 An optical clock based on a nuclear transition: general relativity tests; the variability of physical constants (Flambaum, PRL 97 (2006) 092502)
 (G. Wade *et al.*, arXiv:0905.2230, 14th May 2009)
 (E. Litvinova *et al.*, arXiv:0901:1240, January 2009)

A solid-state nuclear frequency standard
 (E. Peik *et al.*, arXiv:0802.3548, December 2008)

> Tests of the effect of the chemical environment on nuclear decay rates

> Novel ways to achieve stimulated nuclear excitation

Production and detection of ²²⁹**Th**^m

²³³U electroplated on stainless steel strips, ~10⁵ recoils/s
 Stopped in 50 mbar He gas, guided to exit hole
 Collinear laser spectroscopy or in-source RIS for HFS

Electron emitter in gas cell #2

Ion guide efficiency of 221 Fr⁺ ($\tau_{1/2}$ =4.9 min) and 217 At⁺ (32.3 ms) was 6%, 229 Th⁺ 0.06%. Missing efficiency in molecular formation, doubly-charged ions and unknown neutral fraction.

B. Tordoff et al., NIMB 252 (2006) 347

RF carpet + gas cell #3

JYFL

DC and electron emitter in gas cell #4

Gas cell #3 cryogenically cooled. Overall efficiency $(^{221}Fr^+)$ 0.6% but $^{229}Th^+$ extraction efficiency 0.36%. Gas cell #4, $^{221}Fr^+ \sim 16\%$, $^{229}Th^+$ 1.6% (JYFLTRAP).

RIS scheme development in Mainz (2009)

Development of a wide-tunable Ti:Sapphire laser

765.54 nm 845.874 nm 372.049 nm

840

860

300 autoionizing states found in thorium

Jyfi

Workshop on Atomic Physics with Rare Atoms, University of Michigan, June 1-3

grating Ti:Sa wavelength / nm

Improve LIST efficiency - shape the gas jet

A rocket scientist approach – the de Laval nozzle

A supersonic jet "engine" at IGISOL

The nuclear landscape and modern topics

The argument for chemical independence

"All species have a much lower ionization potential than He, therefore they remain ionized during extraction from the gas cell".

JYF

Properties obtained and inferred Isotope Shift (IS) Hyperfine Structure (HFS)

Mean Square Charge Radii $\delta \langle r^2 \rangle^{AA'}$

Nuclear Spin *I* Magnetic Dipole Moment μ_I Electric Quadrupole Moment Q_s

 $\beta_{rms}^{2} = <\beta_{2}>^{2} + (<\beta_{2}^{2}> - <\beta_{2}>^{2}) = \beta_{static}^{2} + \beta_{dynamic}^{2}$

From atomic to nuclear physics

JYF

Mass shift due to change in the nucleus recoil kinetic energy (partly related to change in electron reduced mass) Or Or Potential felt by the electrons Potential felt point nucleus Point nucleus

Mainz Titanium:Sapphire Laser

JŶŶĹ

Ionization via Rydberg states - Gallium

JŸŶĹ

Pressure shifts of n=30 state in He and Ar

Plotting the centroid shifts vs pressure provides extrapolated "unperturbed" value for Rydberg transition.

Scattering length of He and Ar has different signs (He = 1.19, Ar = -1.7) hence the shifts have opposite signs.

JYFL

Workshop on Atomic Physics with Rare Atoms, University of Michigan, June 1-3

The issue of gas purity control

JYFL

150 mbar He. Impurity level ~0.1 ppm. The reaction time for yttrium reacting with oxygen and forming a molecule is ~5 ms. Total evac time ~500 ms.

T. Kessler, I.D. Moore et al., Nucl. Instr. And Meth. B 266 (2008) 681

Are there limitations to the ion guide production?

JŶŶĹ

P. Karvonen, I.D. Moore et al., Nucl. Instr. and Meth. B 266 (2008) 4794

First on-line studies (April 2009)

JYFL

30 MeV α beam, 1 μ A, on 12.5 μ m Ni window. 200 mbar Ar.

