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TargetSPIG 
electrode

Beam

Extractor

Ion guide principle: a universal production method

Based on the survival of primary
ions in helium buffer gas
Charge state concentration: (0), +1
(+2)
Fast gas flow required to prevent
neutralization
Produces ions of any element

More advanced gas catchers
☺ dc fields
☺ rf carpets, funnels and walls
☺ cryogenic temperatures
☺ selective laser ionization

molecular formation
space charge, recombination J. Ärje et al., Phys. Rev. Lett. 54 (1985) 99
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Mass & decay 
spectroscopy

Collinear laser 
spectroscopy (Jon 

Billowes talk)

Ion guide & laser ion 
source (+trap)

RFQ cooler & buncher – optical 
manipulation (Jon Billowes talk)

FURIOS and laser 
development

The IGISOL facility at JYFL
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Isotope Shift (IS) Hyperfine Structure (HFS)

AA
r

′2δ

Nuclear Spin I
Magnetic Dipole Moment μI

Electric Quadrupole Moment Qs
Hyperfine Anomaly

Mean Square Charge Radii

Sample preparation is crucial.
Nuclear reaction products must be slowed and thermalized
quickly, efficiently, universally and selectively.

Nuclear ground state properties…

…by atomic spectroscopy

Special nuclear interest in the heavier systems…
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Factors controlling δ<r2>
Volume change

170Yb
+0.4%
increase
in <r2>

(small but easily detectable
with laser spectroscopy)

171Yb

n

Shape change

176Yb

contributions may be STATIC (nuclear shape)
or DYNAMIC (fluctuations on the nuclear surface)

+4%
increase
in <r2>
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δ<
r2 >

 (f
m

2 )
Volume

Deformation

Dynamical 
effects

Odd-even 
staggering

Isomer shifts

Nuclear physics: the δ<r2> landscape

No studies yet
in this refractory
region.

Static effects

N=104 mid-shell
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Laser spectroscopy of multi-quasiparticle isomers
M.L. Bissel et al., Phys. Lett. B 645 (2007) 330
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Only 6 such isomeric systems have been measured so far. All show
decreases in mean-square charge radii despite increases in Q0.

Why?

βrms
2 = βstatic

2 + (<β2> - <β>2) reduction ?

Reduction in surface diffuseness σ
(loss of pairing) ?

IS, B(E2) Qs

Dynamic

One possibility is to measure spherical multi-quasiparticle isomers

207Bi (21/2+, 182 μs)
204Bi (10-, 13 ms)
204Bi (17+, 1.07 ms)

The lifetimes of these systems become
challenging to collinear laser spectroscopy,
move to in-source spectroscopy.
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Spectroscopy on n-deficient U isotopes
Motivation:

Uranium isotopes with
N=132,134 should have deepest PE
surface minimum for non-zero
octupole deformation. 

P.A. Butler and W. Nazarewicz,
Nucl. Phys. A533 (1991) 249

0.5 MeV

Figure kindly provided by L. Robledo, Madrid
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Earlier studies on Rn, Ra at ISOLDE (1980’s)

Ra

Represents <β2>=Σi<βi
2>

Inclusion of octupole deformation effects
improves consistency of δ<r2>

Inversion of odd-even staggering (OES) (very
unusual) between A=220-226. Connected to
octupole degree of freedom suggested – where
reflection-asymmetric shapes are predicted!

☺ 225Ra is an attractive case for searches of the
atomic EDM due to the enhancement effect
from the nuclear octupole deformation.

S.A. Ahmad et al., Nuc. Phys. A483 (1988) 244 (Ra)

W. Borchers et al., Hyp. Int. 34 (1987) 25 (Rn) W. Kälber et al., Z. Phys. A 334 (1989) 103 (Th)
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“Complete” spectroscopy is needed

8+

4+

6+

0+

2+

Mid-shell

Droplet model

Excited states

Charge radii

Masses/
Binding energies

Figures reproduced with kind permission from P. Rahkila

Preliminary!
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~6 eV
(5-9 eV)

ground 
state

first 
excited 
state

higher excited 
states

ionization 
potential

E1

en
er

gy

0 eV E0

non-resonant 
ionization

excitation of
auto-ionizing states

Ionization of
Rydberg-states

extraction
field or

collisional
ionization

Principle of resonant laser ionization

Laser

Z

N

Mass 
Separator

σR ~ 10-12 cm2

σΙ ~ 10-17 cm2
σΙ ~ 10-15 cm2

Efficiency × Selectivity
C. Geppert, EMIS conference, 2007.
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• repetition rate: 5 - 12 kHz
• tuning range: 

fundamental 700 - 980 nm 
frequency doubled 350 - 490 nm
frequency tripled 233 – 327 nm
frequency quadrupled 200 - 240 nm

•laser linewidth: ~ 4 GHz

computer -
control

ν x 3

ν x 2Ti:Sa 2

Ti:Sa 1

Ti:Sa 3

~10 kHz Nd:YAG
pump-laser

100 W

wave -
meter

Specifications:Setup: 

All solid-state laser system

Operational at JYFL, Mainz and Triumf, Vancouver
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Versatility of solid-state laser system

In operation since 2002Klaus Wendt

DemonstratedDeveloped
scheme

Possible
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First tests on stable Ni using RIS in a gas cell (2009)

Mass shift dominates over field shift.
Uncertainty in IS < 50 MHz

J=4

J=5

J=6

232 nm

739 nm
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6p3 4S3/2
0 cm-1

32588.17

I.P. = 58762.31
~58766

6p27s 4P1/2

F = I+1/2

F = I-1/2

F = I+3/2

F = I+1/2
F = I-1/2
F = I-3/2

355 nm
Bismuth (Z=83)
atomic structure

Bismuth: illustrating the challenges in-source

a b c

d e f

24.6 GHz

4P1/2 linewidth ~35 MHz
CW laser linewidth ~1 MHz
Pulsed laser linewidth ~4 GHz
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Ideal case: Doppler-free spectroscopy
in vacuum (CW first step)

I.D. Moore et al., Hyp. Int. 171 (2007) 135
B. Tordoff, PhD Thesis, University of Manchester (2007).

Resolution limitations

2.17 GHz

2.88 GHz

24.6 GHz

Pulsed dye laser first step (4 GHz linewidth)

In the ion guide: 100 mbar He gas
doppler broadening ~800 MHz,
pressure broadening ~500 MHz
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ISOLDE: demonstration of hot cavity RIS

New down to 182Pb (T1/2 = 55 ms) H. De Witte et al., Phys. Rev. Lett. 98 (2007) 112502 

T. Cocolios, under analysis (Po)

Preliminary results
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65Cu

63Cu

59Cu

57Cu: 6 ions/s

Frequency [GHz]

First Ionization Limit
62317.4 cm-1

CuI: ground state

Autoionizing StateCu+ +  e‐

λ1 = 244.164 nm

λ2 = 441.6 nm

40943.73 cm-1

2S1/2

4P0
1/2

F=1
F=2

F=2
F=1

63
63

( )
( ) ( )

( )

A
hfA

hf

A Cu
Cu Cu

A Cu
μ μ=

In-gas cell spectroscopy of 57,59Cu at LISOL

P. Van Duppen, RNB conference (2009)
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Hot cavity vs gas cell: in-source spectroscopy

Simulated resonance linewidth
of copper transition (244 nm)

Laser bandwidth 1.6 GHz

Hot cavity temperature 2500 K

Gas cell at room temperature

Pressure broadening important

LIST mode is promising!

T. Sonoda et al., arXiv:0904.3716 (April 2009) 
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Principle of LIST method (Laser Ion Source Trap)

LIST principle also to be applied at ISOLDE and the hot cavity ion source

MOTIVATION: 
”to achieve the highest selectivity for radioactive ion beam production”

Repeller electrode (+/- ve)
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Demonstration of RIS in LIST mode – 209Bi
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Further development: narrow linewidth pulsed Ti:Sa

Injection seeding of a pulsed Ti:Sapphire laser. 
Results in a linewidth reduction from ~4 GHz to ~20 MHz

T. Kessler et al., Laser Physics 18 (2008) 1.

Residual FWHM of 145 MHz of the
hyperfine components explained by a
combination of Doppler (~100 MHz) and
power boadening 33 MHz.
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Production and RIS of uranium

Rare 231Pa (t1/2~3×104 a) targets exist. High cross sections
(100’s mb) for (p,xn), (d,xn) reactions
Utilize new shadow gas cell concept (Leuven development)

Ion collector plates
(increase selectivity)

Exit nozzle

Laser beams
(longitudinal)

Accelerator beam

Target position

Yu. Kudryavstev et al.,
arXiv:0904.3635 (April 2009) 
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Relative Frequency (GHz)

68Cu

1010 0 10 20

4GHz
30MHz

Combining the high resolution nature of the collinear beams
method with the high sensitivity of the in-source technique.

Extraction of B factors and hence quadrupole moments –
search for a deviation which may indicate octupole deformation.

Figure kindly provided by K. Flanagan

0 cm-1

24066 cm-1

36128 cm-1

49956 cm-1
49972 cm-1

7483 MHz

8917 MHz

7685 MHz

238U 236U

415 nm

829 nm

722 nm
Cu
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Outlook

We have many open questions to be answered that lie
at the borders of atomic and nuclear physics.

A complete approach should be taken to view the
problem from different angles.
Developing new tools and techniques take time but
are rewarding.
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SPARE SLIDES
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Detection of the illusive isomeric state in 229Th

Motivation: detection of the lowest lying isomeric state which has
yet to be confirmed following 3 decades of experiment and theory.

B.R. Beck et al., PRL 98 (2007) 142501

NASA/EBIT x-ray microcalorimeter
spectrometer: E (229Thm) = 7.6±0.5 eV

Most recent half-life range:
1 min ≤ T1/2

m ≤ 3 min (PRC 79 (2009)
034313)

Experimental studies include:
• Closed cycle of γ ray energies
• Direct reaction work, 230Th(d,t)229Th
• Detection via optical measurements
• Radiochemical techniques
• Feasibility studies of NEET process
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A unique system to investigate atomic – nuclear couplings

An optical clock based on a nuclear transition:
general relativity tests; the variability of physical constants
(Flambaum, PRL 97 (2006) 092502)
(G. Wade et al., arXiv:0905.2230, 14th May 2009)
(E. Litvinova et al., arXiv:0901:1240, January 2009)

A solid-state nuclear frequency standard
(E. Peik et al., arXiv:0802.3548, December 2008)

Tests of the effect of the chemical environment on nuclear decay rates

Novel ways to achieve stimulated nuclear excitation

Why is there such an interest?
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Production and detection of 229Thm

233U electroplated on stainless steel strips, ~105 recoils/s
Stopped in 50 mbar He gas, guided to exit hole
Collinear laser spectroscopy or in-source RIS for HFS

Gas cell #1 Electron emitter in gas cell #2

Ion guide efficiency of 221Fr+ (τ1/2=4.9 min) and 217At+ (32.3 ms) was 6%,
229Th+ 0.06%. Missing efficiency in molecular formation, doubly-charged ions
and unknown neutral fraction.

B. Tordoff et al., NIMB 252 (2006) 347 
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RF carpet + gas cell #3 DC and electron emitter in gas cell #4

Gas cell #3 cryogenically cooled. Overall efficiency (221Fr+) 0.6% but 229Th+

extraction efficiency 0.36%. Gas cell #4, 221Fr+ ~16% , 229Th+ 1.6% (JYFLTRAP).
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RIS scheme development in Mainz (2009)

Development of a wide-tunable Ti:Sapphire laser

300 autoionizing states
found in thorium

J=2

J=3

J=4

372.049 nm

845.874 nm

765.54 nm



Workshop on Atomic Physics with Rare Atoms, University of Michigan, June 1-3

Improve LIST efficiency - shape the gas jet

A rocket scientist approach – the de Laval nozzle

A supersonic jet ”engine” at IGISOL

PPin

An
A
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The nuclear landscape and modern topics
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The argument for chemical independence

”All species have a much lower ionization potential than He, therefore they remain
ionized during extraction from the gas cell”.

JYFLTRAP
purification scan
A=87 Fission yield

predictions

87Rb stable isotope:
overproduced (fission+
elsewhere).

87Kr radioactive isotope
underproduced (lost
via charge exchange)

Fission yield
measurements
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N=50 shell closure

Sizes

Spins

Quadrupole
moments

Magnetic
moments

Model Independent
(measured)

Model Dependent
(inferred)

Dynamic / 
static

deformations

Single / few 
particle

configurations

Isotope Shift δ<r2>

Hyperfine Splitting

Isomer Shift δ<r2>

Measurement of optical spectra

20 μeVLaser spectroscopy
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Isotope Shift (IS) Hyperfine Structure (HFS)
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Magnetic Dipole Moment μI
Electric Quadrupole Moment Qs

Mean Square Charge Radii

Properties obtained and inferred

)3...)(
4
51( 22

2
22 σβ

π
++><+>>=<< sphrr

222
2

2
2

2
2

2 )( dynamicstaticrms ββββββ +=><−><+>=<

Size
(droplet model)

Shape
(quadrupole term)

Diffuseness
(assumed constant)

)36.01(
5

5
22

2

0 ><+><
><

≈ ββ
π

sphrZ
Q

2
2

2
2 >>≠<< ββ



Workshop on Atomic Physics with Rare Atoms, University of Michigan, June 1-3

From atomic to nuclear physics

',2',

'
' AA

ii
AA rF

AA
AAM ><+

−
= δδν

Mass shift due to change in the nucleus
recoil kinetic energy (partly related to
change in electron reduced mass)

or

MASS SHIFT

Atomic factors to calibrateIsotope Shift

FIELD SHIFT
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30 cm

40 cm

pump laser
beam

ti:sa
crystal

high reflection
mirror

concave 
mirror

concave 
mirror

etalon

outcoupling
mirror

incoupling
mirror

Pockels cell

Lyot 
filter

lens

R. Horn, Dissertation Universität Mainz 2003

Mainz Titanium:Sapphire Laser
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             511 nm

Non-resonant laser ionization
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Pressure shifts of n=30 state in He and Ar
Helium Argon
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Plotting the centroid shifts vs pressure
provides extrapolated ”unperturbed”
value for Rydberg transition.

Scattering length of He and Ar has 
different signs (He = 1.19, Ar = -1.7)
hence the shifts have opposite signs.



Workshop on Atomic Physics with Rare Atoms, University of Michigan, June 1-3

Molecular ion formation:
X+ + M → XM+

Reaction Rate constant k (cm3s-1) 

Mo+ + O2
Ru+ + O2
Rh+ + O2
Ti+ + H20
Ti+ + O2
Y+ + O2
Th+ + O2
U+ + O2
Zr+ + O2
Ag+ + O2

7.5×10-11

1.7×10-13

9.2×10-14

6.1×10-11

4.6×10-10

4.1×10-10

6.0×10-10

8.5×10-10

5.0×10-10

1.0×10-13

150 mbar He. Impurity level ~0.1 ppm. The reaction time for yttrium reacting with 
oxygen and forming a molecule is ~5 ms. Total evac time ~500 ms. 

dn/dt = -kn[M] τ = 1/k[M]

The issue of gas purity control
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Impurities at 0.1 ppm level

T. Kessler, I.D. Moore et al., Nucl. Instr. And Meth. B 266 (2008) 681
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Are there limitations to the ion guide production?

Т = 1/(Q*α)1/2

P. Karvonen, I.D. Moore et al., Nucl. Instr. and Meth. B 266 (2008) 4794

α = 1.3×10-7 cm3 s-1
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I.A. 58Ni = 68%
I.A. 60Ni = 26%

Peak count rate:
58Ni ~3400 s-1

60Ni ~1300 s-1 2.6 x

2.6 x

First on-line studies (April 2009)

30 MeV α beam, 1 μA, on 12.5 μm Ni window. 200 mbar Ar. 
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