Towards the study of heavy elements with resonance ionization spectroscopy at IGISOL

Iain Moore

University of Jyväskylä, Finland

Outline

$>$ IGISOL - a brief introduction

> Motivation: spectroscopy of bismuth and uranium (thorium)

$>$ Experimental efforts

$>$ Outlook

Ion guide principle: a universal production method

More advanced gas catchers
() dc fields
() rf carpets, funnels and walls
() cryogenic temperatures
() selective laser ionization
: molecular formation
© space charge, recombination
$>$ Based on the survival of primary ions in helium buffer gas
$>$ Charge state concentration: $(0),+1$ (+2)
$>$ Fast gas flow required to prevent neutralization
$>$ Produces ions of any element

J. Ärje et al., Phys. Rev. Lett. 54 (1985) 99

RFQ cooler \& buncher - optical manipulation (Jon Billowes talk)

$>$ IGISOL - a brief introduction

> Motivation: spectroscopy of bismuth and uranium (thorium)

$>$ Experimental efforts

Nuclear ground state properties...

...by atomic spectroscopy

Isotope Shift (IS)

Mean Square Charge Radii

Hyperfine Structure (HFS)

Nuclear Spin I Magnetic Dipole Moment μ_{I} Electric Quadrupole Moment $Q_{\text {s }}$ Hyperfine Anomaly

Sample preparation is crucial.
Nuclear reaction products must be slowed and thermalized quickly, efficiently, universally and selectively.

Special nuclear interest in the heavier systems...

Factors controlling $\boldsymbol{\delta}<\mathbf{r}^{2}>$

Volume change

(change in surface diffuseness)

Volume change
$\bigcirc n$

(small but easily detectable with laser spectroscopy)

Shape change

$$
\left\langle r^{2}\right\rangle=\left\langle r^{2}\right\rangle_{0}\left(1+\frac{5}{4 \pi}\left(\left\langle\beta_{s}^{2}\right\rangle+\left\langle\beta_{3}^{2}\right\rangle+\ldots\right)\right)
$$

contributions may be STATIC (nuclear shape)
or DYNAMIC (fluctuations on the nuclear surface)

SY̌LL

Nuclear physics: the $\delta<r^{2}>$ landscape

No studies yet in this refractory region.

Laser spectroscopy of multi-quasiparticle isomers

M.L. Bissel et al., Phys. Lett. B 645 (2007) 330

$A \backslash \mathrm{Y}$	I	$\mu\left(\mu_{\mathrm{N}}\right)$	$Q_{\mathrm{s}}(\mathrm{b})$	$Q_{0}(\mathrm{~b})$	$\delta\left\langle r^{2}\right\rangle^{97 \mathrm{~m} 1, A}$
$97^{\mathrm{m} 1}$	$\frac{9}{2}$	$+5.88(2)$	$-0.76(8)$	$-1.40(15)$	

$97^{\mathrm{m} 2}$	$\left(\frac{27}{2}\right)$	$+5.64(3)$	$-1.21(14)$	$-1.50(17)$	$-0.098(1)$
$A \backslash \mathrm{Cs}$	I	$\mu\left(\mu_{\mathrm{N}}\right)$	$Q_{\mathrm{s}}(\mathrm{b})$	$Q_{0}(\mathrm{~b})$	$\delta\left\langle r^{2}\right\rangle^{135 \mathrm{~g}, A}$
135^{g}	$\frac{7}{2}$	$+2.73(1)$	$+0.03(2)$	~ 0	

135^{m}	$\frac{19}{2}$	$+2.18(1)$	$+0.89(7)$	$+1.20(9)$	$-0.0081(13)$
$A \backslash \mathrm{Ba}$	I	$\mu\left(\mu_{\mathrm{N}}\right)$	$Q_{\mathrm{s}}(\mathrm{b})$	$Q_{0}(\mathrm{~b})$	$\delta\left\langle r^{2}\right\rangle^{130 \mathrm{~g}, A}$
130^{g}	0	-	-	$+3.419(24)$	

130^{m}	8	$-0.043(28)$	$+2.77(30)$	$+3.95(43)$	$-0.0473(30)$
$A \backslash \mathrm{Yb}$	I	$\mu\left(\mu_{\mathrm{N}}\right)$	$Q_{\mathrm{s}}(\mathrm{b})$	$Q_{0}(\mathrm{~b})$	$\delta\left\langle r^{2}\right\rangle^{176 \mathrm{~g}, A}$
176^{g}	0	-	-	$+7.30(13)$	

176^{m}	8	$-0.151(15)$	$+5.30(8)$	$+7.55(11)$	$-0.0224(1)$
$A \backslash \mathrm{Lu}$	I	$\mu\left(\mu_{\mathrm{N}}\right)$	$Q_{\mathrm{s}}(\mathrm{b})$	$Q_{0}(\mathrm{~b})$	$\delta\left\langle r^{2}\right\rangle^{177 \mathrm{~g}, A}$
177^{g}	$\frac{7}{2}$	$+2.239(7)$	$+3.39(3)$	$+7.26(6)$	
177^{m}	$\frac{23}{2}$	$+2.308(11)$	$+5.71(5)$	$+7.33(6)$	$-0.035(<1)$
$A \backslash \mathrm{Hf}$	I	$\mu\left(\mu_{\mathrm{N}}\right)$	$Q_{\mathrm{s}}(\mathrm{b})$	$Q_{0}(\mathrm{~b})$	$\delta\left\langle r^{2}\right\rangle^{178 \mathrm{~g}, A}$
178^{g}	0	-	-	$+6.961(43)$	
$178^{\mathrm{m} 1}$	8	$+3.10(1)$	$+4.99(4)$	$+7.11(6)$	$-0.0384(1)$
$178^{\mathrm{m} 2}$	16	$+8.16(4)$	$+6.00(7)$	$+7.20(8)$	$-0.0873(20)$

$$
\left\langle r^{2}\right\rangle=\left\langle r^{2}\right\rangle,\left(1+\frac{5}{4 \pi}\left\langle\beta_{2}^{2}\right\rangle+\ldots\right)+3 \sigma^{2}
$$

$$
Q_{0}=\frac{5 Z\left\langle r^{2}\right\rangle_{s}}{\sqrt{5 \pi}}\left\langle\beta_{2}\right\rangle\left(1+0.36\left\langle\beta_{2}\right\rangle\right)
$$

Only 6 such isomeric systems have been measured so far. All show decreases in mean-square charge radii despite increases in Q_{0}.

Dynamic

Why?

$$
\begin{gathered}
\beta_{\mathrm{rms}}^{2}=\beta_{\mathrm{static}}{ }^{2}+\left(<\beta^{2}>-<\beta>^{2}\right) \text { reduction? } \\
\text { IS, } \mathrm{B}(\mathrm{E} 2) \quad \mathrm{Q}_{\mathrm{s}}
\end{gathered}
$$

Reduction in surface diffuseness σ (loss of pairing) ?

One possibility is to measure spherical multi-quasiparticle isomers
${ }^{207} \mathrm{Bi}\left(21 / 2^{+}, 182 \mu \mathrm{~s}\right)$ ${ }^{204} \mathrm{Bi}\left(10^{-}, 13 \mathrm{~ms}\right)$ ${ }^{204} \mathrm{Bi}\left(17^{+}, 1.07 \mathrm{~ms}\right)$

The lifetimes of these systems become challenging to collinear laser spectroscopy, move to in-source spectroscopy.

Spectroscopy on n-deficient U isotopes

P.A. Butler and W. Nazarewicz, Nucl. Phys. A533 (1991) 249

Motivation:
$>$ Uranium isotopes with $N=132,134$ should have deepest PE surface minimum for non-zero octupole deformation.

Figure kindly provided by L. Robledo, Madrid

Workshop on Atomic Physics with Rare Atoms, University of Michigan, June 1-3

Earlier studies on Rn, Ra at ISOLDE (1980's)

$$
\left.\left\langle r^{2}\right\rangle=\left\langle r^{2}\right\rangle_{\text {sph }}\left(1+\frac{5}{4 \pi}\left(<\beta_{2}^{2}\right\rangle+\left\langle\beta_{3}^{2}\right\rangle+\ldots\right)\right)
$$

$>$ Inclusion of octupole deformation effects improves consistency of $\delta<\mathrm{r}^{2>}$
$>$ Inversion of odd-even staggering (OES) (very unusual) between $A=220-226$. Connected to octupole degree of freedom suggested - where reflection-asymmetric shapes are predicted!
(:) ${ }^{225} \mathrm{Ra}$ is an attractive case for searches of the atomic EDM due to the enhancement effect Represents $\left.\left\langle\beta^{2}\right\rangle=\Sigma_{i}<\beta_{\mathrm{i}}^{2}\right\rangle$ from the nuclear octupole deformation.
S.A. Ahmad et al., Nuc. Phys. A483 (1988) 244 (Ra)
W. Borchers et al., Hyp. Int. 34 (1987) 25 (Rn) W. Kälber et al., Z. Phys. A 334 (1989) 103 (Th)

Workshop on Atomic Physics with Rare Atoms, University of Michigan, June 1-3

Outline

$>$ IGISOL - a brief introduction

> Motivation: spectroscopy of bismuth and uranium (thorium)

$>$ Experimental efforts
Outlook

Principle of resonant laser ionization

C. Geppert, EMIS conference, 2007.

All solid-state laser system

Setup:

Specifications:

- repetition rate: $\quad 5-12 \mathrm{kHz}$
- tuning range:

fundamental	$700-980 \mathrm{~nm}$
fronuonrv douhlod	
Heater	$350-490 \mathrm{~nm}$ Beam dump window

Laser window

Gas feeding

Operational at JYFL, Mainz and Triumf, Vancouver

Workshop on Atomic Physics with Rare Atoms, University of Michigan, June 1-3

Versatility of solid-state laser system

First tests on stable Ni using RIS in a gas cell (2009)

Mass shift dominates over field shift. Uncertainty in IS $<50 \mathrm{MHz}$

Workshop on Atomic Physics with Rare Atoms, University of Michigan, June 1-3

Bismuth: illustrating the challenges in-source

Resolution limitations

Ideal case: Doppler-free spectroscopy in vacuum (CW first step)

Pulsed dye laser first step (4 GHz linewidth)

In the ion guide: 100 mbar He gas doppler broadening $\sim 800 \mathrm{MHz}$, pressure broadening $\sim 500 \mathrm{MHz}$

I.D. Moore et al., Hyp. Int. 171 (2007) 135
B. Tordoff, PhD Thesis, University of Manchester (2007).

ISOLDE: demonstration of hot cavity RIS

New down to ${ }^{182} \mathrm{~Pb}\left(\mathrm{~T}_{1 / 2}=55 \mathrm{~ms}\right)$
T. Cocolios, under analysis (Po)

In-gas cell spectroscopy of ${ }^{57,59} \mathrm{Cu}$ at LISOL

Hot cavity vs gas cell: in-source spectroscopy

Principle of LIST method (Laser Ion Source Trap)

MOTIVATION:
"to achieve the highest selectivity for radioactive ion beam production"

LIST principle also to be applied at ISOLDE and the hot cavity ion source

Demonstration of RIS in LIST mode - ${ }^{209} \mathbf{B i}$

Further development: narrow linewidth pulsed Ti:Sa

Injection seeding of a pulsed Ti:Sapphire laser. Results in a linewidth reduction from $\sim 4 \mathrm{GHz}$ to $\sim 20 \mathrm{MHz}$

(a) Hyperfine structure of ${ }^{27} \mathrm{Al}$

Residual FWHM of 145 MHz of the hyperfine components explained by a
 combination of Doppler ($\sim 100 \mathrm{MHz}$) and power boadening 33 MHz .
T. Kessler et al., Laser Physics 18 (2008) 1.

Production and RIS of uranium

$>$ Rare ${ }^{231} \mathrm{~Pa}\left(t_{1 / 2} \sim 3 \times 10^{4} \mathrm{a}\right)$ targets exist. High cross sections (100's mb) for (p, xn), (d, xn) reactions
$>$ Utilize new shadow gas cell concept (Leuven development)

$>$ Combining the high resolution nature of the collinear beams method with the high sensitivity of the in-source technique.
> Extraction of B factors and hence quadrupole moments search for a deviation which may indicate octupole deformation.

Relative Frequency (GHz)

Figure kindly provided by K. Flanagan

Outlook

$>$ We have many open questions to be answered that lie at the borders of atomic and nuclear physics.
$>$ A complete approach should be taken to view the problem from different angles.
$>$ Developing new tools and techniques take time but are rewarding.

THANK YOO FOR YOOR ATTENTION:

SPARE SLIDES

Detection of the illusive isomeric state in ${ }^{229} \mathrm{Th}$

Motivation: detection of the lowest lying isomeric state which has yet to be confirmed following 3 decades of experiment and theory.

B.R. Beck et al., PRL 98 (2007) 142501
$>$ NASA/EBIT x-ray microcalorimeter spectrometer: $\mathrm{E}\left({ }^{229} \mathrm{Th}^{\mathrm{m}}\right)=7.6 \pm 0.5 \mathrm{eV}$
$>$ Most recent half-life range:
$1 \min \leq T_{1 / 2}{ }^{\mathrm{m}} \leq 3 \min ($ PRC 79 (2009) 034313)
$>$ Experimental studies include:

- Closed cycle of γ ray energies
- Direct reaction work, ${ }^{230} \mathrm{Th}(\mathrm{d}, \mathrm{t})^{229} \mathrm{Th}$
- Detection via optical measurements
- Radiochemical techniques
- Feasibility studies of NEET process

Why is there such an interest?

$>$ A unique system to investigate atomic - nuclear couplings
$>$ An optical clock based on a nuclear transition: general relativity tests; the variability of physical constants (Flambaum, PRL 97 (2006) 092502)
(G. Wade et al., arXiv:0905.2230, 14th May 2009)
(E. Litvinova et al., arXiv:0901:1240, January 2009)
$>$ A solid-state nuclear frequency standard (E. Peik et al., arXiv:0802.3548, December 2008)
$>$ Tests of the effect of the chemical environment on nuclear decay rates
$>$ Novel ways to achieve stimulated nuclear excitation

Production and detection of ${ }^{229} \mathbf{T h}^{\mathrm{m}}$

$>{ }^{233} \mathrm{U}$ electroplated on stainless steel strips, $\sim 10^{5}$ recoils/s
$>$ Stopped in 50 mbar He gas, guided to exit hole
$>$ Collinear laser spectroscopy or in-source RIS for HFS

Electron emitter in gas cell \#2

Ion guide efficiency of ${ }^{221} \mathrm{Fr}^{+}\left(\tau_{1 / 2}=4.9 \mathrm{~min}\right)$ and ${ }^{217} \mathrm{At}^{+}(32.3 \mathrm{~ms})$ was 6%, ${ }^{229} \mathrm{Th}^{+} 0.06 \%$. Missing efficiency in molecular formation, doubly-charged ions and unknown neutral fraction.
B. Tordoff et al., NIMB 252 (2006) 347

DC and electron emitter in gas cell \#4

Gas cell \#3 cryogenically cooled. Overall efficiency (${ }^{221}{ }^{2} \mathrm{Fr}^{+}$) 0.6% but ${ }^{229} \mathrm{Th}^{+}$ extraction efficiency 0.36%. Gas cell $\# 4,{ }^{221} \mathrm{Fr}^{+} \sim 16 \%,{ }^{229} \mathrm{Th}^{+} 1.6 \%$ (JYFLTRAP).

Workshop on Atomic Physics with Rare Atoms, University of Michigan, June 1-3

RIS scheme development in Mainz (2009)

Development of a wide-tunable Ti:Sapphire laser

300 autoionizing states found in thorium

Improve LIST efficiency - shape the gas jet

> A rocket scientist approach - the de Laval nozzle

A supersonic jet "engine" at IGISOL

The nuclear landscape and modern topics

The argument for chemical independence

"All species have a much lower ionization potential than He , therefore they remain ionized during extraction from the gas cell".

Laser spectroscopy

Measurement of optical spectra

Properties obtained and inferred

Isotope Shift (IS)

Mean Square Charge Radii

Hyperfine Structure (HFS)

Nuclear Spin I

 Magnetic Dipole Moment μ_{I} Electric Quadrupole Moment $Q_{s}$$$
\begin{aligned}
& \begin{array}{c}
\text { Size } \\
\text { (droplet model) }
\end{array} \\
& \left\langle r^{2}\right\rangle=\left\langle r^{2}\right\rangle_{\text {sph }}\left(1+\frac{5}{4 \pi}\left(\left\langle\beta_{2}^{2}\right)+\ldots\right)+3 \sigma^{2}\right) \\
& \left.\left.Q_{0} \approx \frac{5 Z\left\langle r^{2}\right\rangle_{\text {sph }}}{\sqrt{5 \pi}} \beta_{2}\right\rangle\left(1+0.36<\beta_{2}\right\rangle\right)
\end{aligned}
$$

$$
\beta_{\text {rms }}^{2}=\left\langle\beta_{2}\right\rangle^{2}+\left(\left\langle\beta_{2}^{2}\right\rangle-\left\langle\beta_{2}\right\rangle^{2}\right)=\beta_{\text {static }}^{2}+\beta_{\text {dynamic }}^{2}
$$

From atomic to nuclear physics

Isotope Shift
Atomic factors to calibrate

Mass shift due to change in the nucleus recoil kinetic energy (partly related to change in electron reduced mass)

or

Mainz Titanium:Sapphire Laser

Pockels cell
high reflection mirror

Non-resonant laser ionization

Ag I

Ionization via Rydberg states - Gallium

287.5050287 .5075287 .5100287 .5125 $\lambda(\mathrm{nm})$

Workshop on Atomic Physics with Rare Atoms, University of Michigan, June 1-3

Pressure shifts of $\mathrm{n}=\mathbf{3 0}$ state in He and Ar

Plotting the centroid shifts vs pressure provides extrapolated "unperturbed" value for Rydberg transition.

Scattering length of He and Ar has different signs ($\mathrm{He}=1.19, \mathrm{Ar}=-1.7$) hence the shifts have opposite signs.

The issue of gas purity control

Molecular ion formation:
$\mathrm{X}^{+}+\mathrm{M} \rightarrow \mathrm{XM}^{+}$
$d n / d t=-k n[M] \longrightarrow \tau=1 / k[M]$

Reaction	Rate constant k ($\mathrm{cm}^{\mathbf{3}} \mathbf{s}^{-1}$)
$\mathrm{Mo}^{+}+\mathrm{O}_{2}$	7.5×10^{-11}
$\mathrm{Ru}^{+}+\mathrm{O}_{2}$	1.7×10^{-13}
$\mathrm{Rh}^{+}+\mathrm{O}_{2}$	9.2×10^{-14}
$\mathrm{Ti}^{+}+\mathrm{H}_{2} 0$	6.1×10^{-11}
$\mathrm{Ti}^{+}+\mathrm{O}_{2}$	4.6×10^{-10}
$\mathrm{Y}^{+}+\mathrm{O}_{2}$	4.1×10^{-10}
$\mathrm{Th}^{+}+\mathrm{O}_{2}$	6.0×10^{-10}
$\mathrm{U}^{+}+\mathrm{O}_{2}$	8.5×10^{-10}
$\mathrm{Zr}^{+}+\mathrm{O}_{2}$	5.0×10^{-10}
$\mathrm{Ag}^{+}+\mathrm{O}_{2}$	1.0×10^{-13}

Impurities at 0.1 ppm level

150 mbar He . Impurity level $\sim 0.1 \mathrm{ppm}$. The reaction time for yttrium reacting with oxygen and forming a molecule is $\sim 5 \mathrm{~ms}$. Total evac time $\sim 500 \mathrm{~ms}$.
T. Kessler, I.D. Moore et al., Nucl. Instr. And Meth. B 266 (2008) 681

Are there limitations to the ion guide production?

P. Karvonen, I.D. Moore et al., Nucl. Instr. and Meth. B 266 (2008) 4794

First on-line studies (April 2009)

$30 \mathrm{MeV} \alpha$ beam, $1 \mu \mathrm{~A}$, on $12.5 \mu \mathrm{~m} \mathrm{Ni}$ window. 200 mbar Ar .

