Atomic Physics Techniques Employed at TITAN Ryan Ringle workshop on atomic physics with rare atoms

Properties of neutron halo nuclei

Neutron number

•very exotic (large n/p ratios) very large RMS matter distribution difference in matter and charge radii •very small S_n or S_{2n}

Why bother?

- sensitive probe of nuclear structure
- excellent proving ground for ab-initio nuclear theories
- opportunity to use atomic techniques to probe nuclear systems

TRIUMF: ISAC | & II

Use the recently commissioned TITAN facility to measure the masses of halo nuclei

Penning trap mass spectrometry of short-lived radioactive nuclides

Linear Magnetic Field + Harmonic Electrostatic Potential

Three Harmonic Eigen-motions

The mass measurement is made by finding the true cyclotron frequency of the ion in the trap

Application of quadrupolar field converts magnetron motion into cyclotron motion

Extraction through magnetic field converts radial energy to longitudinal energy

Gräff et. al., Z. Phys. A **297** (1980) 35 Bollen et. al., J. Mod. Opt. **39** (1992) 257 König et. al., IJMS **142** (1995) 95

Measurement of TOF gives cyclotron frequency and hence the mass

The TITAN facility at ISAC

G. Gwinner

RFQ Cooling and Bunching

R **Charge State Breeding** & In-Trap Spectroscopy

TITAN - built for speed

Fast DAQ/Controls

- MIDAS based data acquisition
- minimal software/hardware interaction during measurement
- free-running frequency modulated RF system
- DAQ/controls not limiting measurement repetition rate

Parallel Operation

- parallel loading of RFQ
- parallel sideband cooling in EBIT (no charge breeding)
- purified samples delivered to MPET on demand

Fast Magnetron Preparation¹

MR-TOF Isobar Separator (coming soon)

resolving power comparable to sideband cooling in a significantly shorter time

What role do masses play?

TRIUMF FEBIAD ion source made beams of noble gases available ⁸He: Bricault et al., Rev. Sci. Instrum. **79** (2008) 02A908

 H_2 used as buffer gas in RFQ to avoid resonant charge exchange

discretionary beam time

- $3 \times {}^{8}$ He measurements
- $2 \times {}^{6}$ He measurements

⁸He: Ryjkov *et al.*, PRL **101** (2008) 012501 ^{6,8}He: Brodeur *et al.*, in prep.

AME03: Audi et al., Nucl. Phys. A 729 (2003) 337

Preliminary (statistical uncertainty) ME(⁶He) = 17592.081(23) keV ME(⁸He) = 31609.687(40) keV

Currently working with A. Schwenk, S. Bacca and G. Hagen *et. al.* on CC and EFT description of ^{6,8}He

40

Bachelet *et al.* measured a significant deviation in the ¹¹Li mass $\delta m < 3$ keV required for solid test of nuclear theory

 $\delta m < I$ keV required to no longer contribute to CR uncertainty

Shortest lived nuclide measured in a Penning trap Smith et al., PRL 101 (2008) 202501

AME '03: $S_{2n}(^{11}Li) = 300 \pm 20 \text{ keV}$			
Reference	Method	S _{2n} [keV]	
Thibault et al. PRC 12 , 644 (1975)	Mass Spec.	170 ± 80	
J.M.Wouters et al. Z. Phys. A 331 , 229 (1988)	TOF	320 ± 120	
T. Kobayashi et <i>al.</i> KEK Rep. 91-22 (1991)	⁺⁺ B(π ⁻ ,π ⁺) ⁺⁺ Li	340 ± 50	
B.M. Young et al. PRL 71 , 4124 (1993)	¹⁴ C(¹¹ B, ¹¹ Li) ¹⁴ O	295 ± 35	
Bachelet <i>et al.</i> PRL 100, 182501 (2008)	Mass Spec.	376 ± 5	

Meas-AME03 (keV)

-10

-15

-20

Improved ¹²Be mass value will contribute to more precise $S_{2n}(^{14}Be)$ Low yields are expected (10 pps)

Measured ¹²Be with as few as 30 pps

Preliminary (statistical uncertainty) ME(¹²Be) = 25078(2) keV 15.005

Meas. Unc. (keV) 1.921

Meas-AME03 (keV)

1.095(0.1438)

1.413

Birge Ratio

10

Halo masses and charge radii

Experiment Theory $\delta \nu^{A,A'} = \nu^{A'} - \nu^{A} = \delta \nu^{A,A'}_{MS} + K_{FS} \cdot \delta < r_c^2 >^{A,A'}$

ab-initio nuclear theory references

- DCM ¹¹Li: Tomaselli et al., Nucl. Phys. A 690 (2001) 298
- GFMC (AV18+UIX, AV8) ⁶He: Pieper, et. al., PRC 64 (2001) 014001
- SVMC ¹¹Li: Varga et al., PRC **66** (2002) 3013
- NCSM (AV8) ⁶He, ¹¹Be: Forssén et. al., PRC **71** (2005) 044312
- GFMC (AV18+IL2) ^{6,8}He: Pieper, Nucl. Phys. A **751** (2005) 516c
- NCSM (CDB2k, INOY) ^{6,8}He: Caurier and Navrátil, PRC **73** (2006) 021302(R)
- NCSM (CDB2k, INOY) ¹¹Li, ¹¹Be: Forssén et al., PRC **79** (2009) 021303(R)

HCI's with the TITAN EBIT

@ 4 T, as close as 10 cm from the

trap center

Electron collector

Magnet / Trap

Phase coupler RF HV

n=2 - n=3 transitions in Ne-like Ba⁴⁵⁺

Radiative capture into

the K shell of bares C, O & N

& hare A

Photon energy (keV)

Radiative capture into

the K shells of H-like

Charge breeding times

For mass measurements on **short-lived isotopes** with HCl's, a rapid production of HCl's is necessary:

Charge breeding time < half-life

With the TITAN EBIT working parameters...

Breeding time: Time to reach given charge states by electron-impact ionization, including electron-recombination and ion heating losses.

Calculated by resolving the coupled rates equations describing the time-evolution of various charge states in the trap.

> E-beam energy: 25 keV **E-beam current: 400 mA (4 A)** Magnetic field: 6 T

Current density: ~25000 A/cm²

He-like Ar ¹⁶⁺ (A=40)	~2 ms (0.2)
Bare Ar ¹⁸⁺ (A=40)	~30 ms (3)
He-like Kr ³⁴⁺ (A~84)	~30 ms (3)
Bare Kr ³⁶⁺ (A~84)	~I s (0.1)
He-like Xe ⁵²⁺ (A~I30)	~300 ms (30)
He-like Au ⁷⁷⁺ (A=197)	~ I s (0.1)
Ne-like U ⁸²⁺ (A=238)	~ s (0.1)

Bare ⁷⁴Rb CB time: ~300 ms He-like ⁷⁴Rb CB time: ~30 ms ⁷⁴Rb half-life: 65 ms

HCI's with the TITAN EBIT

50

First radioactive HCI's from TITAN EBIT!

Preliminary

must account for electron binding energies (~ 433 eV)

In-trap spectroscopy

The EBIT isn't restricted to aiding mass measurements...

Electron Capture Branching Ratio Measurements

Electron capture is the process by which a proton of the nucleus decays to a neutron by capture of a bound electron.

$$p + e^- \rightarrow n + v_e$$

Following EC, the daughter emits Xrays as a result of electron decays filling shell vacancies: **X-ray after Electron Capture.**

ECBR in singly charged ions are measured from **X-ray yields**.

- -ECBR used to evaluate double β and $0\nu\beta\beta$ -decay nuclear matrix elements.
- -If $0\nu\beta\beta$ decay is observed, such matrix elements can be used to infer the **neutrino mass**.

Silicon detector for β-decay measurements

 β decay electrons from ¹⁰⁷In ions implanted on a AI foil in front of the Si detector.

In-trap spectroscopy

What we expect...K α lines from ¹⁰⁷Cd

→ Ground state decay X-rays from EC (64%):

E	nergy (keV)	Intensity (%)
XR l	3.13	3.92 % 17
XR ka2	22.984	14.1 % 7
XR kal	23.174	26.4 % 13
XR kβ3	26.06	2.29 % 11
XR kßl	26.095	4.41 % 21
XR kß2	26.644	1.14 % 6

LEGe X-ray detector

EBIT can be used to observe **EC** events!

No ¹⁰⁷In Injection

Summary and Outlook

<u>Halo nuclei</u>

- High precision penning trap mass measurements of 6,8 He, 11 Li and 11 Be have been performed with $\delta m < 1 \text{ keV}$
- Mass values obtained with TITAN do not contribute a significant source of uncertainty to relative charge radius determinations
- Future halo mass measurement proposals include ¹⁹C (1n), ¹⁴Be (2n) and ¹⁷Ne (2p).

<u>EBIT</u>

Kŀ

- Electron capture events have been detected
- Stable HCI's have been measured in the MPET
- Radioactive HCI's have been produced
- Purification and identification techniques are being developed
- High-precision mass measurements of radioactive species later this year (⁴⁹⁻⁵³K, ⁵¹⁻⁵³Ca and ^{52,53}Sc to constrain models which predict evolution of magic numbers at N=32-34)

- M. Pearson will discuss using ion bunches from the TITAN RFQ for laser spectroscopy

Collaborators

M. Brodeur, T. Brunner, S. Ettenauer, A. Gallant, M. Smith, A. Lapierre, R. Ringle, V. Ryjkov, M. Good, P. Delheij, G. Gwinner, D. Lunney, M.R. Pearson, and J. Dilling for the TITAN collaboration <u>Special Thanks:</u> S. Bacca, G.W.F. Drake, A. Schwenk

