The Structure of Cold Dark Matter Haloes

Recent Insights from High Resolution Simulations

Marcel Zemp (UM)

with Jürg Diemand (UZH), Mike Kuhlen (UCB), Piero Madau (UCSC), Ben Moore (UZH), Doug Potter (UZH), Joachim Stadel (UZH) & Larry Widrow (QU)

Dark Stars Workshop Ann Arbor, 10. November 2009

Via Lactea II & GHALO

- Formation of Milky Way size cold dark matter structure in a cosmological framework ⇒ no baryons
- WMAP 3-year cosmology
- Via Lactea II was running under INCITE program of DOE
- Via Lactea II one of 10 breakthroughs of 2008 in scientific computing selected by DOE

Supercomputers

Via Lactea II on Jaguar at ORNL 1×10^{6} CPUh

GHALO on MareNostrum at BSC 2×10^{6} CPUh

Basic Properties

	Via Lactea II	GHALO
M _{200b} [Mo]	1.92×10^{12}	1.27×10^{12}
r _{200b} [kpc]	402	349
v _{circ,max} [km s ⁻¹]	201	153
M _p [Mo]	4100	994
N _{200b}	4.68×10^{8}	1.27×10^{9}
N _{tot,hr}	1.1×10^{9}	2.1×10^{9}

Density Profile I

Best fit: $\gamma = 1.24$

Via Lactea II: $ho_{\mathsf{GNFW}}(r) =
ho_s (r/r_s)^{-\gamma} (1+r/r_s)^{-3+\gamma}$

Density Profile II

MPLA, 2009, 24, 2291

GHALO: $\rho_{SM}(r) = \rho_0 \exp(-\lambda [\ln(1 + r/R_\lambda)]^2)$

800 kpc

 ho^2

Via Lactea II

Via Lactea II Subhaloes

- 40000 subhaloes within 400 kpc
- 2000 subhaloes within 50 kpc
- 20 subhaloes within 8 kpc
- Subhaloes locally at 8 kpc that looked smooth in previous simulations
- Subhaloes within subhaloes
 - \Rightarrow Subsubhaloes \Rightarrow Sub²haloes
 - \Rightarrow Subⁿhaloes

Sub²haloes

 $M_{tidal} = 1.97 \times 10^9 \text{ Mo}$

 $M_{tidal} = 5.09 \times 10^9 \text{ Mo}$

100 kpc

Resolution: VL2 vs. VL2m

 $64 \times m_p$

Local Properties: Procedure

• Cut out spheres that contain O(10³) particles Calculate density, mean velocity, dispersion tensor etc.

Local Densities I

Local Densities II

• Gini coefficient measures inequality 8 kpc: $G(\bar{\rho}) = 0.14$ 400 kpc: $G(\bar{\rho}) = 0.62$ USA: G(USD) = 0.47 (2006)

• Holes in the dark matter distribution \Rightarrow 2% of spheres at 400 kpc with radius r_{sph}/4 which normally contain ca. 20 particles are empty!

Local Mean Velocities

Local Velocity Dispersions

Local Velocity Anisotropy

VD Ellipsoid Orientation

VD Ellipsoid Shape

Position Space @ 8 kpc

r = (0,8,0) kpcd = 1 kpc

MNRAS, 2009, 394, 641

Velocity Space @ 8 kpc

km s∧-1

510.3 385.9 V 261.6 137.3 Max: 510.3 Min: 12.95 MNRAS, 2009, 394, 641 r = (0,8,0) kpcd = 1 kpcХ

Position Space @ 400 kpc

 $r = (0,400,0) \text{ kpc } \overset{7}{\overset{0}{9}}_{6}$ d = 21.4 kpc $\overset{7}{\overset{0}{9}}$

Velocity Space @ 400 kpc

Annihilation Luminosity

Annihilation is a two-body process

$$\mathcal{L}\equiv\int
ho^2\mathrm{d}V$$

For cusped profiles

$$\mathcal{L} \propto r_{
m S}^3
ho_{
m S}^2 \propto V_{
m max}^3 \sqrt{c_V}$$

Luminosity is concentrated

 $\mathcal{L}(r_{\rm S})/\mathcal{L}_{\rm tot}\sim 90\%$

Total Annihilation Signal

Subhalo Annihilation Signal

Central Flux Corrections

Subⁿhalo Abundance

Subhalo Spatial Distribution

Subhalo Concentrations

Boost Factor

- Small subhaloes contribute more than large ones
- Total resolved subhalo contribution is 97% of host halo in Via Lactea II
 ⇒ boost factor B = 1.97
- Extrapolation to smaller masses can lead to B = O(10)
- Tidal debris \Rightarrow B = O(1)

Corrected Total Signal

Diffuse Background

■ Isotropic extragalactic component
 ⇒ measured by EGRET

- Galactic component
 modelled with GALPROP
- Undetectable subhaloes and smooth host halo
 - \Rightarrow modelled from simulation
- Detector sensibility
- Calculate Signal-to-Noise

Detectable Subhaloes

ApJ, 2008, 686, 262

Signal-to-Noise

Summary I

- Density profile becomes flatter than NFW \Rightarrow slope -0.8 @ 0.05 % r_{vir}
- DM haloes have a lot of structure: \Rightarrow subⁿhaloes, streams and voids
- Velocity space is not smooth
- Generally grainy structure in phase space ⇒ the distribution function is not smooth!

Summary II

- a few subhaloes should be detectable
- 95 % are extended sources
 - \Rightarrow discrimination against pointlike sources like pulsars
- Distribution on sky is consistent with isotropy
- High S/N \Rightarrow massive subhaloes with median V_{max} = 24 km s⁻¹
- D ~ 10 100 kpc

Summary III

Locally (@ 8 kpc) numerically limited
Missing baryonic physics

 Important for understanding DM detection experiments and stellar streams embedded within DM streams

via lactea II

Diemand Kuhlen Madau Zemp Moore Potter Stadel 2008