2010 Michigan Quantum Summer School Quantum Simulation and Metrology August 2 – 13, 2010

Aaron Leanhardt Hui Deng Luming Duan Chris Monroe Angela Milliken

Michigan Summer Symposia: 1928-1941

Michigan Summer Symposia: 2008-

A new science for the 21st Century?

Quantum Information Science

21st Century

Quantum Simulations with Ions

Chris Monroe

Department of Physics JOINT QUANTUM INSTITUTE Department of Physics National Institute of Standards and Technology

Quantum Simulation: What is it?

$$i\hbar \frac{d\Psi}{dt} = H\Psi$$

 Ψ Describes *N* interacting systems, each system having *D* degrees of freedom

 D^N coupled differential equations

International Journal of Theoretical Physics, Vol. 21, Nos. 6/7, 1982

Simulating Physics with Computers

Richard P. Feynman

Department of Physics, California Institute of Technology, Pasadena, California 91107

Received May 7, 1981

Two approaches

Quantum Computing: parallel processing on 2^N inputs

Example: N=3 qubits

 $\Psi = a_0 |000\rangle + a_1 |001\rangle + a_2 |010\rangle + a_3 |011\rangle$ $a_4 |100\rangle + a_5 |101\rangle + a_6 |110\rangle + a_7 |111\rangle$

Measurement gives random result

e.g., $\Psi \Rightarrow |101\rangle$

quantum interference saves the day!

Deutsch (1985) **Shor (1994)** fast number factoring $N = p \times q$ Grover (1996) fast database search

quantum interference saves the day!

$$\frac{\text{quantum}}{\sqrt{\text{NOT gate:}}} \begin{vmatrix} 0 \rangle \rightarrow |0 \rangle + |1 \rangle \\ |1 \rangle \rightarrow |1 \rangle - |0 \rangle$$

quantum $|0\rangle |0\rangle \rightarrow |0\rangle |0\rangle$ XOR gate: $|0\rangle |1\rangle \rightarrow |0\rangle |1\rangle$ $|1\rangle |0\rangle \rightarrow |1\rangle |1\rangle$ $|1\rangle |1\rangle \rightarrow |1\rangle |0\rangle$

e.g., $(|0\rangle + |1\rangle) |0\rangle \rightarrow |0\rangle |0\rangle + |1\rangle |1\rangle$ superposition $\rightarrow \underline{entanglement}$

Quantum simulations with individual atoms

D. Porras and J. I. Cirac, *Phys. Rev. Lett.* 92, 207901 (2004)
X.-L. Deng, D. Porras, and J. I. Cirac, *Phys. Rev.* A 72, 063407 (2005)
A. Friedenauer, et al., *Nature Physics* 4, 757 (2008)
K. Kim, et al., *Phys. Rev. Lett.* 103, 120502 (2009)
K. Kim, et al., *Nature* 465, 590 (2010)
E. Edwards, et al., Phys. Rev. B (2010); ArXiv 1005.4160

from S. Lloyd, Science 319, 1209 (2008)

Barcelona Berkeley Boulder (NIST) Duke Georgia Tech Griffith (Australia) Innsbruck Los Alamos Maryland/JQI MIT Munich Oxford Paris Siegen Seattle (UW) Simon Fraser Sussex Tokyo UIm Weizmann Inst.

C.M. & D. J. Wineland, *Sci. Am.*, 64 (Aug 2008) R. Blatt & D. J. Wineland, *Nature* **453**, 1008 (2008)

Trapped Atomic Ions

$$F = F_0 |\uparrow\rangle\langle\uparrow| - F_0 |\downarrow\rangle\langle\downarrow|$$

Slow: Coulomb-coupled nonlocal normal modes, phonons

Fast: dipole-dipole coupling (or other forms)

$$\frac{e^2}{s} = \frac{e^2}{\sqrt{d^2 + \delta^2}} = \frac{e^2}{d} - \frac{(e\delta)^2}{2d^3} + \dots \qquad \begin{array}{l} \delta \sim 20 \text{ nm} \\ e \delta \sim 1000 \text{ Debye} \end{array}$$

Global spin-dependent force

Global spin-dependent force

ADD: Independent spin flips

¹⁷¹Yb⁺ hyperfine qubit

$${}^{2}S_{1/2} \xrightarrow{|\uparrow\rangle} = |1,0\rangle \qquad \uparrow \qquad v_{HF} = 12,642,812,118 + 311B^{2} Hz$$

$$(3 \text{ kHz/G } @ 5 \text{ G})$$