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Outline of lectures

|. Introduction to nonequilibrium many-particle physics

2.A. More connections between quantum information
and condensed matter physics.

B. Importance of topological defects in spinor
condensates.

3.“Topological” phases in condensed matter, and how
they might be realized with atoms




What can condensed matter gain from
many-atom and many-ion physics?

|. Maybe atomic physicists can build a quantum
computer, to solve all our problems.

2. Maybe atomic physicists will build a quantum emulator:
a system that replicates the “essentials’” of a problem we
care about:

Hubbard model (high-temperature superconductivity
“Topological insulators” Frustrated magnets

3. Maybe atomic physicists will find interesting collective
physics in regimes that are difficult to study in
condensed matter systemes.




One example of #3: coherent dynamics

In condensed matter systems, the time scale to reach
thermal equilibrium is frequently either too short for
interesting collective physics to be observed, or too long
(e.g., glasses).

When interesting nonequilibrium phenomena have been
observed in CM, they have usually been classical.

In several atomic physics experiments, the system has
been observed on a time scale

long enough for interesting changes, but

short enough that the dynamics is coherent.




A quantum Newton's cradle

Toshiya Kinoshita', Trevor Wenger' & David S. Weiss'

It is a fundamental assumption of statistical mechanics that a
closed system with many degrees of freedom ergodically samples
all equal energy points in phase space. To understand the limits of
this assumption, it is important to find and study systems that are
not ergodic, and thus do not reach thermal equilibrium. A few
complex systems have been proposed that are expected not to
thermalize because their dynamics are integrable”. Some nearly
integrable systems of many particles have been studied numeri-
cally, and shown not to ergodically sample phase space’. However,
there has been no experimental demonstration of such a system
with many degrees of freedom that does not approach thermal
equilibrium. Here we report the preparation of out-of-equili-
brium arrays of trapped one-dimensional (1D) Bose gases, each
containing from 40 to 250 *’Rb atoms, which do not noticeably
equilibrate even after thousands of collisions. Our results are
probably explainable by the well-known fact that a homogeneous
1D Bose gas with point-like collisional interactions is integrable.
Until now, however, the time evolution of out-of-equilibrium 1D
Bose gases has been a theoretically unsettled issue*?®, as practical
factors such as harmonic trapping and imperfectly point-like
interactions may compromise integrability. The absence of damp-
ing in 1D Bose gases may lead to potential applications in force
sensing and atom interferometry.

To see qualitatively why 1D gases might not thermalize, consider
the elastic collision of two isolated, identical mass classical particles in
one dimension. Energy and momentum are conserved only if they
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the prevailing density'. The collisions that we study satisfy this
criterion well. Our observations extend from the Tonks—Girardeau
regime, where only pairwise collisions can occur', to the intermediate
coupling regime, where there can be three- (or more) body col-
lisions" . In both regimes, atoms that are set oscillating and colliding
in a trap do not appreciably thermalize during our experiment.

We start our experiments with a Bose—Einstein condensate (BEC)
loaded into the combination of a blue-detuned two-dimensional
(2D) optical lattice and a red-detuned crossed dipole trap (see
Methods). The combination of light traps makes a 2D array of distinct,
parallel Bose gases, with the 2D lattice providing tight transverse
confinement and the crossed dipole trap providing weak axial trap-
ping''. The dynamics within each tube of the 2D array are strictly 1D
because the lowest transverse excitation, fw, (where w,/21 = 67 kHz
is the transverse oscillation frequency), far exceeds all other energies in
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Integrability vs. thermalization
in | D Bose gas




Integrability vs. thermalization

A classical Hamiltonian system is “integrable” if there are as many
independent constants of the motion as there are coordinates.

Such a system is essentially N harmonic oscillators (with possibly
different frequencies). In an infinite-dimensional system, there are
extensively many conservation laws, and no thermalization.

The same distinction appears in quantum systems. (The |D Bose
gas with delta-function interactions is “integrable™.)

“Thermalization hypothesis”: evolution, using the Schrodinger
equation, of a non-integrable quantum system at finite energy

density above the ground state leads, after enough time, to

a pure state that is locally the same as a thermal (mixed) state.




Spontaneous symmetry breaking in a quenched
ferromagnetic spinor Bose-Einstein condensate

L. E. Sadler', J. M. Higbie', S. R. Leslie', M. Vengalattore' & D. M. Stamper-Kurn'

A central goal in condensed matter and modern atomic physics
is the exploration of quantum phases of matter—in particular,
how the universal characteristics of zero-temperature quantum
phase transitions differ from those established for thermal phase
transitions at non-zero temperature. Compared to conventional
condensed matter systems, atomic gases provide a unique oppor-
tunity to explore quantum dynamics far from equilibrium. For
example, gaseous spinor Bose—Einstein condensates' (whose
atoms have non-zero internal angular momentum) are quantum
fluids that simultaneously realize superfluidity and magnetism,
both of which are associated with symmetry breaking. Here we
explore spontaneous symmetry breaking in *’Rb spinor conden-
sates, rapidly quenched across a quantum phase transition to a
ferromagnetic state. We observe the formation of spin textures,
ferromagnetic domains and domain walls, and demonstrate phase-
sensitive in situ detection of spin vortices. The latter are topological
defects resulting from the symmetry breaking, containing non-zero
spin current but no net mass current”.

Spinor atomic gases'™ are those comvrised of atoms with non-

quench, high-resolution maps of the magnetization vector density
were obtained using magnetization-sensitive phase-contrast imag-
ing®. After the quench, transverse ferromagnetic domains of variable
size formed spontaneously throughout the condensate, divided by
narrow unmagnetized domain walls. Concurrent with the formation
of these domains, we also observed topological defects that we
characterize as singly charged spin vortices with circulating spin
currents and unmagnetized filled cores.

Spinor BECs in the |F = 1, m, = 0) hyperfine state were confined
in an optical dipole trap characterized by oscillation frequencies
(wx, Wy, w;) = 2w(56,350,4.3) s~!'. The condensates, typically con-
taining 2.1(1) X 10° atoms, were formed at a magnetic field of 2 G and
characterized by a peak density ny = 2.8 X 10 cm™> and Thomas—
Fermi radii (ry,7,,7,) = (12.8,2.0,167) pm (see Methods). Variations
in the internal-state wavefunction were constrained in these aniso-
tropic condensates to just two spatial dimensions (X and z) because
the spin healing length, & = \/A2/2ml|c,|ny = 2.4pm, was larger
than the cloud size r, in the y direction. Thus, imaging the condensate
in the -2 volane nroduced comolete mans of the magnetization

Phase-ordering kinetics after quenching
across a quantum phase transition




Basic idea of “universality” at continuous
classical phase transitions
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These exponents come from a classical theory!

Similar universality appears at continuous quantum (T=0)
phase transitions and for dynamical quantities:

we can hope for universal scaling phenomena that are
independent of microscopic details.




Entanglement of single-atom quantum bits at a distance

D. L. Moehring', P. Maunz', S. Olmschenk’, K. C. Younge', D. N. Matsukevich’, L.-M. Duan' & C. Monroe"?

Quantum information science involves the storage, manipulation
and communication of information encoded in quantum systems,
where the phenomena of superposition and entanglement can
provide enhancements over what is possible classically*. Large-
scale quantum information processors require stable and addres-
sable quantum memories, usually in the form of fixed quantum
bits (qubits), and a means of transferring and entangling the
quantum information between memories that may be separated
by macroscopic or even geographic distances. Atomic systems are
excellent quantum memories, because appropriate internal elec-
tronic states can coherently store qubits over very long timescales.
Photons, on the other hand, are the natural platform for the dis-
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separated by one metre. Two remotely located trapped atomic ions
each emit a single photon, and the interference and detection of
these photons signals the entanglement of the atomic qubits. We
characterize the entangled pair by directly measuring qubit corre-
lations with near-perfect detection efficiency. Although this
entanglement method is probabilistic, it is still in principle useful
for subsequent quantum operations and scalable quantum infor-
mation applications'*°.

In each of two congeneric radio-frequency ion traps, we trap and
laser-cool a single '7'Yb™ ion?'. Each ion is cooled to near the
Doppler limit via laser light at 369.5 nm tuned just redward of the
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Direct measurement of entanglement, the
basic property of quantum information

One connection to previous examples:
Entanglement in a quantum coherent system is
responsible for the appearance of entropy under the
“thermalization hypothesis”.




Quantum entanglement

Sometimes a pure quantum state of a bipartite system AB is also a
pure state of each subsystem separately:

Example: S;=1 state of two s=1/2 spins, A and B

Wag)=|Ta)®| TB)
a “product” state

Sometimes a pure quantum state of a bipartite system AB is not a
pure state of each subsystem separately:

Example: singlet state of two s=1/2 spins

1

Wap) = NG (| Ta)@|1le)—|1la)®]|1B))

an “entangled” state

“Maximal knowledge of the whole does not imply maximal knowledge of the parts”




Entanglement entropy

W) = % (114 ® ] 1s) — | 1a)® | 15))

an “entangled” state

In an entangled state, the state of subsystem A or B is not a pure

guantum state, but rather a density matrix
For the singlet

PA—(% O>_PB
_ S ) =
0 3

A classical uncertainty or entropy has been created by the
operation of looking at only part of the system.




Entanglement entropy

Definition: the entanglement entropy of a pure state,
with respect to a given partition into A and B,
IS the von Neumann entropy of the partial density matrices

(P1lpalez) = > (o] x (WD) (W[(|d2) x [¢5))

.

J

S(p) = —Trpalogy pa = —Trpplog, pp

In a diagonal basis, thisis just § = — Zpi log, p;

1

The singlet generates one bit of classical entropy when the two
spins are separated




Entanglement entropy

Thermalization hypothesis:
for a non-integrable quantum coherent system, the density matrix
at long times converges locally to that of a thermal system.

(P1lpalez) = > (o] x (WD) (W[(|d2) x [¢5))

.

J

S(p) = —Trpalogy pa = —Trpplog, pp

Note that the partial density matrix for subsystem A
gives the results of all experiments limited to A

What we interpret locally as thermal entropy must come from
entanglement entropy if the global system is phase-coherent.




Spontaneous symmetry breaking in a quenched
ferromagnetic spinor Bose-Einstein condensate

L. E. Sadler', J. M. Higbie', S. R. Leslie', M. Vengalattore' & D. M. Stamper-Kurn'

A central goal in condensed matter and modern atomic physics
is the exploration of quantum phases of matter—in particular,
how the universal characteristics of zero-temperature quantum
phase transitions differ from those established for thermal phase
transitions at non-zero temperature. Compared to conventional
condensed matter systems, atomic gases provide a unique oppor-
tunity to explore quantum dynamics far from equilibrium. For
example, gaseous spinor Bose—Einstein condensates' (whose
atoms have non-zero internal angular momentum) are quantum
fluids that simultaneously realize superfluidity and magnetism,
both of which are associated with symmetry breaking. Here we
explore spontaneous symmetry breaking in *’Rb spinor conden-
sates, rapidly quenched across a quantum phase transition to a
ferromagnetic state. We observe the formation of spin textures,
ferromagnetic domains and domain walls, and demonstrate phase-
sensitive in situ detection of spin vortices. The latter are topological
defects resulting from the symmetry breaking, containing non-zero
spin current but no net mass current”.

Spinor atomic gases'™ are those comvrised of atoms with non-

quench, high-resolution maps of the magnetization vector density
were obtained using magnetization-sensitive phase-contrast imag-
ing®. After the quench, transverse ferromagnetic domains of variable
size formed spontaneously throughout the condensate, divided by
narrow unmagnetized domain walls. Concurrent with the formation
of these domains, we also observed topological defects that we
characterize as singly charged spin vortices with circulating spin
currents and unmagnetized filled cores.

Spinor BECs in the |F = 1, m, = 0) hyperfine state were confined
in an optical dipole trap characterized by oscillation frequencies
(wx, Wy, w;) = 2w(56,350,4.3) s~!'. The condensates, typically con-
taining 2.1(1) X 10° atoms, were formed at a magnetic field of 2 G and
characterized by a peak density ny = 2.8 X 10 cm™> and Thomas—
Fermi radii (ry,7,,7,) = (12.8,2.0,167) pm (see Methods). Variations
in the internal-state wavefunction were constrained in these aniso-
tropic condensates to just two spatial dimensions (X and z) because
the spin healing length, & = \/A2/2ml|c,|ny = 2.4pm, was larger
than the cloud size r, in the y direction. Thus, imaging the condensate
in the -2 volane nroduced comolete mans of the magnetization

First example: spin-1 spinor BEC
Second example: quantum Ising model
w/nonintegrable perturbations




Spin-1 condensate with dipole interaction

(J. Kjall, A. Essin, and J. Moore, 2008)
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Confinement to a two dimensional geometry o,=4um
Typical experimental values n;p=2.2*10*cm3, B=150 mG

(Vengalattore, Stamper-Kurn et.al. 2008)
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Spin and charge instabilities important for all q,
indicating a possible tendency towards stripe
and checkerboard phases. Can these be stable?
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(Instability onset diagram, Cherng and Demler arxiv 2008)




Is the equilibrium phase diagram like the instability diagram?

Quadratic Zeeman favors polar state

c,<0 favors ferromagnetic state in Rb

Dipole without quadratic Zeeman
gives a ferromagnetic state along B

With smaller c,, i.e. all

energies at the same magnitude,
striped/helical phases appear.

No clear checkerboard with the
experimental values (at current size);
if there is a stable checkerboard, it
occupies a small part of the static phase diagram.

Upper graph: a=30 um, 0,=3 pm,
Con3p=40 Hz, c,n;,=-8 Hz,
C4N3p=10 Hz, qn,,=-2.5 Hz

Lower graph: transition to polar
state, spins alongy < 60% ferro.
a=19 um, 0,=3.8 um,

Con3p=10 Hz, ¢c,n;,=-8 Hz,
C4N3p=5 Hz, qn,,=1.5 Hz




This experiment indicates that dipole interactions,
and possibly trap geometry, can complicate both
the phase diagram and dynamics: it seems that the
experiment may not reach thermal equilibrium.

In the experiment, the Hamiltonian can be rapidly
changed across a phase boundary (a "quantum
guench”) to see how a new order is established.

The standard way to study such “phase-ordering
Kinetics” in condensed matter is by TDGL, a time-
dependent version of Ginzburg-Landau theory.




This is still classical dynamics of the order
parameter, but an interesting prediction of TDGL is
that two models may be in the same static
universality class but have different dynamical
universality classes, e.qg., different growth of
correlation length after a quench.

“Model F” for a spinor condensate:
second sound density plus condensate dynamics
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Remark: How could the same free energy function
give rise to different dynamics?

Think about an electric dipole in an electrical field
versus a magnetic dipole in a magnetic field.

Both have the same energy (mu dot B), but the

magnetic dipole precesses while the electrical dipole
oscillates.

The key difference is the commutator/Poisson
bracket of various operators with H.




But even if a certain TDGL model is correct for
the longest time scales at any nonzero
temperature, we expect other behavior for
intermediate times.

Two ways to understand this statement:

1. the description in terms of an order parameter
plus possibly a few other fields cannot describe the
enormous number of possible initial states, including
“initial noise” effects; (cf. Lamacraft for spinor BEC)

2. The loss of all phase coherence except in the
order parameter field requires that some source of
decoherence have acted on all other quantities.




At quantum criticality, for some quantum critical
points, we understand the “complexity” of the
quantum critical state as reflected e.g. in numerical
approaches. (Lecture Il)

There are several uses of this idea. Here, we focus
on

Application: Coherent dynamics near quantum
critical points

using theoretical ideas that will be explained in the
next lecture




Example 2: Dynamics near quantum critical points
Our motivation:

e \We want to control how far a system is excited out of the
instantaneous ground state of H(i).

We sweep the Hamiltonian slowly through a 1D quantum
critical point separating two gapped phases.

g(?) g; + 1%

g(0) gi < ge
g(tr) gi + Tty > g

NS
e

The closing of the gap A means that deviations from the ground state are
ower-law in the sweep rate: e.qg.,

rather than being exponentially small if A > 0 everywhere (adiabatic theorem).




Example 2: Dynamics near quantum critical points

* \We would like to distinguish integrable and chaotic
guantum dynamics, and spontaneous symmetry breaking
from explicit symmetry breaking.

Our starting point: cross through the well-studied quantum
Ising critical point at various angles in the phase diagram

h

(E8 integrable line, Zamolodchikov)



Case 1: quantum Ising sweep

We sweep g through the critical point at a constant rate.

How different is the resulting state from the ground state?

g=1.4J —g=0.8]
The energy difference and “number of |« 9714 —>g=06

excitations” are predicted to be related to 9714 = 970H
the sweep rate by a simple scaling law

« FO'S

(Dziarmaga, Polkovnikoy, ....)

Eglg(t)] — Eolg(t)] ~ nexAlg(t)] ~ T/ Ag(1))],




Case 1: quantum Ising sweep
Entanglement evolution

We sweep g through the critical point at a constant rate,
then pause at a fixed final value grto observe evolution.

The quantum Ising model has well- g=1.4J —g=0.6J
defined linearly propagating excitations '
("domain walls”). The propagation of 1}
these excitations leads to linearly

increasing entanglement, even after
the sweep has stopped. 0.8 | M
(cf. Calabrese and Cardy) 0.7}

0.9}

0.6
This “light-cone” effect depends on the 0

number of excitations created, and (b)
hence on the sweep rate.
What causes these entanglement

oscillations?




Case 1: quantum Ising sweep

We sweep g through the critical point at a constant rate,
then pause at a fixed final value grto observe evolution.

The oscillations result because, after a slow sweep, the final state
consists of a ground state plus excitations at multiples of the final gap.

The small dispersion in final energy leads to a slow decay of the
oscillations.




Application 2: Dynamics near quantum critical points

e Sometimes we want to study quantities that are well-

defined in the infinite system, and independent of a
particular observable.

We compare states using the spatial decay rate of the
“Loschmidt echo” overlap (N = # of sites)

[(toltn)|” ~ exp(—aN).

which is easily computed from the matrix product state

representation, and can be found exactly for the quantum
Ising case.




Case 1: quantum Ising sweep

We sweep g through the critical point at a constant rate,
then pause at a fixed final value grto observe evolution.

We can use the overlap integral to - gi.4Jegf=o_I50J
focus on the oscillations and check T L A )
the TEBD method.

Puzzle: why the nonanalytic dips at
certain points in time?

: g.=1.40J — g.=0.70J
For the quantum Ising model, can | f

compute these exactly using a
picture of Landau-Zener tunneling
at each momentum k independently
(theory curves shown)...




Integrable versus non-integrable models

The nonanalytic dips result from a special k value where the
tunneling probability is exactly 1/2. Since this model is
Integrable, the excitations at this k have sharp energy.

(Quantum Ising model is “solvable” in a Bogoliubov formalism)

(0)) =[] (urlox) + vkl1x))

k

og |2 P, =1 — |ug|* = exp <—

I

(1)) H(Uk|0k> + e AR Ty 11,0))
k

27TJ2k2>

Leads to universal 1/t “equilibration” (power-law rather than exponential),
in an integrable system, resulting just from the continuum of excitation

frequencies.

% /OOO dk log [(1 — Py)* 4+ P.” + Pe(1 — Py) cos(Ay()t)] .

(Final state has a diagonal density matrix but is not thermal.)




Integrable versus non-integrable models

We see similar behavior with different exponents along the
other integrable line (2D Ising model in a field).

Along other directions, the model is expected to be non-
integrable. For a slow sweep, we see:

at short times the system looks like the integrable case;

beyond some time determined by theta and the sweep rate, the
“excitations” begin to interact strongly and the cusps are washed out.

This leads to an “entanglement catastrophe”, associated with
thermalization, that makes the model difficult to study with our method.

Our current priority: understand what is universal in this process




Conclusions

1. Ultracold atomic systems can show new types of ordered phases (e.g.,
the spinor BEC). Moreover, they may show quantum coherent dynamics
over a long enough type scale for interesting collective physics before
decoherence.

(There are also steady-state phase transitions under driving, which |
won’'t have much to say about.)

2. Dynamics near a quantum critical point can show a weak type of
“equilibration” (damped oscillations) in an infinite system even for an
iIntegrable system.

3. Entanglement growth, numerical accuracy, and physical properties
such as oscillations all seem sensitive to non-integrability.
Some results (e.g., the energy scaling formula for sweeping through a quantum

critical point; cf. Polkovnikov) are believed to be general to any dimension.
Others will require some nontrivial development to reach d>1.




Conclusions and future directions

1. The finite-entanglement scaling at some critical points can be
theoretically predicted.

2. Dynamics near a quantum critical point can show a weak type of
“equilibration” (damped oscillations) in an infinite system even for an

iIntegrable system.

3. First results on non-integrable dynamics of large quantum systems:

Entanglement growth, numerical accuracy, and physical properties such
as oscillations all are sensitive to non-integrability.

Current directions:

Conserved quantities don’t equilibrate; generic non-conserved quantities
equilibrate exponentially; but some “hydrodynamical” quantities are believed to
equilibrate as universal power-laws that are highly nontrivial.

Apply our techniques to specific 1D experimental systems.

Use finite-entanglement scaling like finite-size scaling, to extrapolate numerical
results to a larger physical system (like the 2D Hubbard model).




