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. Introduction to optomechanics and optomechanical systems:
Inspiration, measurement and backaction, laboratory versions

. Influence of light (measurement) on the mechanics:
Optomechanical potential, optomechanical spring effect; cavity cooling
and amplification; measurement backaction

. Feedback model for optomechanics:
optomechanical gain spectrum; ponderomotive squeezing

. Future directions
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 LIGO: Laser Interferometer

peak sensrtrvrty Gravrtatronal -wave Observatory

fractional expansion (strain) of ~ 10% in1s
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Quantum-Mechanical Radiation-Pressure Fluctuations in an Interferometer

Carlton M. Caves
W. K. Kellogg Radiation Labovratory, California Institute of Technology, Pasadena, California 91125
(Received 29 January 1980)

The interferometers now being developed to detect gravitational vaves work by measur-
ing small changes in the positions of free masses. There has been a controversy whether
quantum-mechanical radiation-pressure fluctuations disturb this measurement. This
Letter resolves the controversy: They do.
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Gallery of cavity optomechanical systems

Bouwmeester [(Nature 444, 75 (2006)] Kippenberg



Gallery of cavity optomechanical systems

Lehnert group



“Membrane in the middle” (Harris, Yale; others)
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Nature 452, 72 (2008)
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H,. = E(2p)A—Fsin(2¢)Z.,,A—Fkcos(2p)ZZ,,A+...

linear coupling: quadratic coupling:
optical spring, bistability, phonon QND, ..
ponderomotive squeezing... ’



many atoms in a trap
“mechanical” potential

w, = 27(20—200 kHz)
T <uK
phonon #01 0.3

light-atom coupling
9(z) = g,sin(k,2)
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atoms ca

Tunability of optomechanical coupling (strength, type)

Immediately in the quantum regime (ultracold)

Dominated by quantum radiation pressure fluctuations (thermally isolated)
Connected directly to basic theory (quantum optics, atomic physics)
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Direct observation of collective atomic motion:
probe side-lock
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Direct observation of collective atomic motion:
probe side-lock

Spectral power in 1ms intervals
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The optical spring effect

Bare mechanical frequency

optomechanical

force on collective variable: shift

F, =Fn(Z)-Mw?Z

Purdy et al., arXiv:1005.4085

m Q: Why is cantilever moving?
A: Radiation pressure fluctuations



Phonon number
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Quantum fluctuations of light within a cavity

* For our system (non-granular, low temperature):
2N 1

oC > >
K 1+(A-w) Ik

!

Proportional to intensity

S (@)

Note: At constant intensity, shot noise fluctuations of photon number in
a resonant cavity are enhanced w.r.t. those in free space!

monochromatic laser beam

vacuum in all other modes spectrum analyzer




Cavity-induced heating: measured by atom loss

= —dN
N—=(U -k.T)——
dt ( 1) dt




Cavity-induced heating: measured by atom loss

Heating rate per
cavity photon
compared to free
space value

5/2r (MHz)

What this means:

* Quantum fluctuations of radiation pressure dominate over other heating
sources

* Quantum metrology: back-action heating of macroscopic object at level
prescribed by quantum measurement limits
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Measurement and feedback in cavity optomechanics

m Measurement scenario

measureme
sensitivity

output
quadratures
cavity X out (C())
X > You(@)
nt
H_ (v)| €—

Z(w)




Measurement and feedback in cavity optomechanics

m Coherent backaction scenario
¢ optomechanical frequency shift
¢ cavity nonlinearity and bistability

measureme
sensitivity

output
quadratures
cavity Xout (a))
X >—> Y, (a)
nt optical
H cav (a)) <— H mech (C()) backaction

Z(w)




Measurement and feedback in cavity optomechanics

m Optomechanical amplification/squeezing of light

iInput output
guadratures quadratures
X in (Cf)) cavity X out (Cf))
Yin (Cf)) > > > > Yout (C())
measurement optical
sensitivity H_, (v) €— H_ . (o) backaction
Z(w)
G, () >

Optomechanical gain spectrum



Measurement and feedback in cavity optomechanics

m Optomechanical amplification/squeezing of light

iInput output

guadratures quadratures

X in (Cf)) cavity X out (Cf))

Yin (Cf)) > Sfa > > Yout (C())

measurement optical
sensitivity H_, (v) €— H_ . (o) backaction
A

G, () amplification

Gtot (a)) 1  suppression, “Pondgromotive squeezing”

G, () i >

Key component in future of LIGO: from detector to observatory
Osderkirnbimienbl)aPRIDG2L0R2002 (2001).




Measurements of optomechanical gain spectrum
see Marino et al., PRL 104, 073601 (2010); Verlot et al.,ibid, 133602.
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power density (rel. to shot noise)

Spectral record of noise-driven atomic motion

added noise — 10x shot noise

OM shifted bare mechanical
frequency frequency
(93 kHz) (100 kHz)
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Measurements of optomechanical gain spectrum

adjusted for detector efficiency

frequency (kHz)
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settings:
Agy = -2 GHz
5000 atoms

<n>=2



Measurements of optomechanical gain spectrum

adjusted for detector efficiency

120 1 ' ' | settings:
Agy = -2 GHz
5000 atoms

110 — <n>=2

100 —

frequency (kHz)

70 —_|

—1t/2 0 /2
guadrature phase

Theory: semiclassical Langevin equations, one free parameter
Fabre et al., PRA 49, 1337 (1994); Mancini and Tombesi, ibid., 4055.




Ponderomotive squeezing?

no extra
noise
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Optomechanical amplification of vacuum noise
NOT adjusted for detector efficiency (max reduction to 0.93 = - 0.3 dB)
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Ponderomotive squeezing? (not clear yet)
NOT adjusted for detector efficiency (max reduction to 0.93 = - 0.3 dB)
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More to do

Granularity: strong coupling bewteen single phonons/photons
¢ what happens to canonical phenomena of cavity optomechanics?
¢ guantum optics, quantum information
Cavity spin optodynamics in analogy with cavity optomechanics
Many-body atomic physics inside a driven cavity
¢ Dicke model and superradiance
¢ lots more unrealistic ideas out there
Quantum metrology (cf Thompson)
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