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1. Introduction to optomechanics and optomechanical systems:
Inspiration, measurement and backaction, laboratory versions

2. Influence of light (measurement) on the mechanics:
Optomechanical potential, optomechanical spring effect; cavity cooling 
and amplification; measurement backaction

3. Feedback model for optomechanics:
optomechanical gain spectrum; ponderomotive squeezing

4. Future directions



The scientific challenge:
extremely sensitive position (force) detection

LIGO: Laser Interferometer 
Gravitational-wave Observatorypeak sensitivity:

fractional expansion (strain) of ~ 10-23  in 1 s

2010 m−Z
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Gallery of cavity optomechanical systems

Bouwmeester [(Nature 444, 75 (2006)] Kippenberg



Gallery of cavity optomechanical systems

Lehnert group
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“Membrane in the middle” (Harris, Yale; others)

linear coupling:
optical spring, bistability, 
ponderomotive squeezing… 

quadratic coupling:
phonon QND,… 
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many atoms in a trap
“mechanical” potential
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Tunability of optomechanical coupling (strength, type)
Immediately in the quantum regime (ultracold)
Dominated by quantum radiation pressure fluctuations (thermally isolated)
Connected directly to basic theory (quantum optics, atomic physics)
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Direct observation of collective atomic motion:
probe side-lock

bare cavity

probe

frequency



Direct observation of collective atomic motion:
probe side-lock

Spectral power in 1ms intervals



force on collective variable:

( ) 2
Z zF Fn Z M Zω= −

Bare mechanical frequency

optomechanical
shift

Purdy et al., arXiv:1005.4085
Q: Why is cantilever moving?
A: Radiation pressure fluctuations

The optical spring effect
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Quantum fluctuations of light within a cavity

For our system (non-granular, low temperature):
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Proportional to intensity

Note: At constant intensity, shot noise fluctuations of photon number in 
a resonant cavity are enhanced w.r.t. those in free space!

spectrum analyzer

monochromatic laser beam

vacuum in all other modes



Cavity-induced heating: measured by atom loss
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Heating rate per 
cavity photon 

compared to free 
space value

Cavity-induced heating: measured by atom loss

What this means:
Quantum fluctuations of radiation pressure dominate over other heating 
sources
Quantum metrology: back-action heating of macroscopic object at level 
prescribed by quantum measurement limits
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Measurement and feedback in cavity optomechanics
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Measurement scenario



Measurement and feedback in cavity optomechanics

⊕
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Coherent backaction scenario
optomechanical frequency shift
cavity nonlinearity and bistability



Measurement and feedback in cavity optomechanics
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Optomechanical amplification/squeezing of light



Measurement and feedback in cavity optomechanics
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Optomechanical gain spectrum
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Optomechanical amplification/squeezing of light
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amplification

suppression, “Ponderomotive squeezing”

Key component in future of LIGO: from detector to observatory
see Kimble et al., PRD 62, 022002 (2001).



Measurements of optomechanical gain spectrum
see Marino et al., PRL 104, 073601 (2010); Verlot et al.,ibid, 133602.

-detection efficiency
(cavity to electronics)

7%

add extra 
noise

ν+



Spectral record of noise-driven atomic motion
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Measurements of optomechanical gain spectrum
adjusted for detector efficiency
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∆ca = -2 GHz
5000 atoms

<n> = 2



Measurements of optomechanical gain spectrum
adjusted for detector efficiency

quadrature phase
0 π/2−π/2
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settings:
∆ca = -2 GHz
5000 atoms

<n> = 2

Theory: semiclassical Langevin equations, one free parameter
Fabre et al., PRA 49, 1337 (1994); Mancini and Tombesi, ibid., 4055.



Ponderomotive squeezing?

-detection efficiency
(cavity to electronics)

7%

no extra 
noise
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Optomechanical amplification of vacuum noise
NOT adjusted for detector efficiency (max reduction to 0.93 = - 0.3 dB)
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Ponderomotive squeezing? (not clear yet)
NOT adjusted for detector efficiency (max reduction to 0.93 = - 0.3 dB)

quadrature phase
0 π/2−π/2

fr
eq

ue
nc

y 
(k

H
z)

settings:
∆ca = -2 GHz
3700 atoms
<n> = 2.5



1. Introduction to optomechanics and optomechanical systems:
Inspiration, measurement and backaction, laboratory versions

2. Influence of light (measurement) on the mechanics:
Optomechanical potential, optomechanical spring effect; cavity cooling 
and amplification; measurement backaction

3. Feedback model for optomechanics:
optomechanical gain spectrum; ponderomotive squeezing

4. Future directions



More to do

Granularity: strong coupling bewteen single phonons/photons
what happens to canonical phenomena of cavity optomechanics?
quantum optics, quantum information

Cavity spin optodynamics in analogy with cavity optomechanics
Many-body atomic physics inside a driven cavity

Dicke model and superradiance
lots more unrealistic ideas out there

Quantum metrology (cf Thompson)
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