Joseph H. Thywissen University of Toronto

Quantum summer school Ann Arbor, Michigan 2-13 August 2010

Introduction to research group **Course on Trapped Quantum Gases:** I.I Thermal DFG; I.2 T=0 limit; I.3 Bose gases Lectures |&2 2. Interacting bosons 2.1 GPE; 2.2 Gaussian Ansatz; 2.3 TF solution; 2.4 LDA idea & validity; 2.5 Hydrodynamics **Experiment: RF dressed double-well 3. Interacting fermions** 3.0 Spin degrees of freedom; 3.1 Mean field: variational solution; 3.2 Scattering theory; 3.3 Feshbach resonances & unitarity; 3.4 BEC-BCS crossover; 3.5 Repulsive gases: Lecture 3 Ferromagnetic? Experiment: Energy of a repulsive DFG

EI: Bosons & Fermions on a chip

EI: Bosons & Fermions on a chip

Themes:

Bosons in double-well potentials Hydrodynamic to Josephson regime transition Breakdown of LDA

Strongly interacting fermions Ferromagnetism

E2: Single-site imaging of fermions in an opical lattice

E2: Single-site imaging of fermions in an opical lattice

<u>Goal</u>: Local probe of fermion lattice physics Thermometry Prospects for cooling? Quantum simulation of the Fermi hubbard model

<u>Basic question</u>: "What do trapped quantum gases look like?"

<u>Basic question</u>: "What do trapped quantum gases look like?"

Unlike textbook statistical mechanics, we have a trapping potential. Atoms need to be held somehow...! But how do we think about non-uniform gases?

Fermi Dirac distribution

Fermi-Dirac integrals

$$f_n(C) \equiv \frac{1}{\Gamma(C)} \int_0^\infty \frac{a^{n-1} da}{C^{-1} e^a + 1} = -\operatorname{Li}_n(-C)$$

where Li is the "polylog" function: $\operatorname{Li}_n(C) = \sum C^j / j^n$

relation to normal log: $f_1 = \ln(1+C)$

i=1

In-trap distribution at finite T (fermions)

T=0 (Thomas Fermi) profile for fermions

Gaussian ansatz: energy vs. size

attractive (a<0) case

Edge effects

Is a superfluid a perfect fluid?

...or is there more to it?

Equations for a perfect fluid

BEC in a tuneable double well: Crossover from hydrodynamics to quantum transport

RF-dressed magnetic + optical trap

<u>RF-dressed traps:</u>

Schmiedmayer, Zobay, Perrin, DeMarco, Ketterle, van Druten, Phillips/Spielman/Porto, ...

Adiabaticity & generation of entangled states

application to clock improvement:

- -Ketterle (2008,9)
- -Oberthaler (2010)
- -related: Vuletic (2010)

•Many-body adiabaticity necessary for these applications.

But do we understand dynamics throughout the single- to double-well crossover?

•Previous work observed Josephson-type plasma oscillations.

-Oberthaler (2005) -Steinhauer (2007)

We observe multifrequency dynamics.

Measuring transport dynamics

prepare

2) snap to balanced trap + time evolution

3) rapid separation to freeze dynamics

4) imaging

Two-frequency dynamics

Two-frequency dynamics

Hydrodynamics

Writing the BEC wave function as

$$\Phi(r,t) = \sqrt{\rho(r,t)}e^{i\phi(r,t)}$$

and defining the local velocity as
$$~ec{v}_s(ec{r},t)=rac{\hbar}{m}ec{
abla}\phi(ec{r},t)$$

immediately the fluid must be irrotational, and will follow perfect fluid equations

$$\frac{\partial}{\partial t}\rho = -\vec{\nabla}\cdot(\rho\,\vec{v}_s)$$
$$m\left(\frac{\partial}{\partial t}+\vec{v}_s\cdot\vec{\nabla}\right)\vec{v}_s = -\vec{\nabla}\left[U+g\rho\right]$$

if we neglect a ``quantum pressure'' term. This is equivalent to a dynamic Thomas Fermi or local density approximation. The criterion for validity is that the **healing length must be much smaller than the system size.**

Two-mode model

Two-mode hamiltonian, zero T:

$$H = E_c \frac{n^2}{2} - E_J \sqrt{1 - \frac{4n^2}{N^2}} \cos \phi$$

interaction

tunnelling

relative number:

$$n \equiv (N_L - N_R)/2$$
$$z \equiv (N_L - N_R)/N$$

non-dimensional form:

$$H = \frac{\Lambda}{2}z^2 - \sqrt{1 - z^2}\cos\phi$$

interaction parameter: $\Lambda = N^2 E_c / 4E_J$

$\frac{\text{small oscillations:}}{\omega_P = \frac{1}{\hbar} \sqrt{E_J \left(E_c + \frac{4E_J}{N^2} \right)}} \xrightarrow{\Lambda \ll 1} 2E_J / N\hbar \equiv \omega_R \quad \text{(Rabi regime)}}{\frac{1}{\sqrt{E_J E_c}} \sqrt{E_J E_c} / \hbar} \quad \text{(Josephson regime)}}$

"Plasma frequency" or "Josephson frequency"

<u>Refs</u>:

Gati and Oberthaler, J Phys B (2007), and references therein. (Anderson, Leggett, Javanainen, Sipe, Smerzi, Sols, Walls, ...)

Frequency vs. barrier height

Frequency vs. barrier height

Nature of higher mode?

Frequency vs. barrier height

Who will rid me of this turbulent mode?

->important in traps without axial symmetry

Conclusions & Questions

Observed quantum transport in a hybrid magnetic trap
 Explore transition from the Josephson regime to Hydrodynamic regime
 High quality dynamics reveals a surprising richness in structure

•Mode structure includes not only lowest dipole/Josephson mode, but also a low-lying octopole mode.

- -2-mode-model fails at Vb ~ 1.2 μ
- -new modes appear at Vb $^{\sim}$ 0.9 μ

•Open questions:

- -Damping of Josephson mode
- -Decay of Self-trapped state (not shown here)

Interacting Fermi gases
3.1 Mean field: variational solution

Variational solution: example of minimization

Comparison of TF ansatz energies to energy functional minimization

Radius of TF ansatz soln

mean field chemical potential from TF ansatz

3.2 Scattering theory

Setting up the problem

Assuming a potential with spherical symmetry, we can treat each (spatial) angular momentum separately:

$$\psi_{\ell}(R) = \phi_{\ell}(R)/R$$
 $\ell = 0, 1, 2, \dots$ for $s -, p -, d -, \dots$

Task: solve the Schrödinger equation

$$-\frac{\hbar^2}{2\mu}\frac{d^2\phi_\ell(R)}{dR^2} + V_\ell(R)\phi_\ell(R) = E\phi_\ell(R)$$

Start with an incoming plane wave with $E = \hbar^2 k^2 / (2\mu)$ After collision, end up with phase-shifted plane wave:

$$\phi_{\ell}(R,E) \to c \frac{\sin(kR - \pi\ell/2 + \eta_{\ell}(E))}{\sqrt{k}} e^{i\eta_{\ell}(E)}$$

Centrifugal barrier

The potential in center-of-mass coordinates includes a centrifugal barrier:

$$V_{\ell}(R) = V(R) + \hbar^2 \ell (\ell + 1) / (2\mu R^2)$$

This barrier is repulsive for I>0 but vanishes for I=0. Since its height is ~ 0.1 mK, practically restricts ultracold atoms to s-wave collisions!

For s-wave collisions, our outgoing wave function has a phase shift defined by

$$k \cot \eta_0(E) = -\frac{1}{a} + \frac{1}{2}r_0k^2$$

a = scattering length(neglect at small k)

Scattering amplitude

Another way to write the scattered wave function is

The scattering term has an amplitude

 $f_k = -[1/a + ik]^{-1} \quad \text{``scattering amplitude''}$

The phase shift of the scattered wave is its complex argument:

Results of low-energy scattering theory

The total cross section for scattering is given by

$$\sigma = 4\pi |f_{\vec{k}}(\vec{n})|^2 = \frac{4\pi a^2}{1 + k^2 a^2},$$

Results of low-energy scattering theory

The total cross section for scattering is given by $\sigma = 4\pi |f_{\vec{k}}(\vec{n})|^2 = \frac{4\pi a^2}{1+k^2 a^2},$

<u>I</u>. This is written for *non-identical particles*, like two different spin states colliding. For *identical bosons*, there is an additional factor of 2; for *identical fermions*, $\sigma = 0$.

<u>2</u>. In the low-k limit, get the well-known $\sigma = 4\pi a^2$, valid for weakly interacting degenerate atoms.

<u>3</u>. Note that the cross-section does not depend on the sign of the scattering length. Additional measurements are necessary to distinguish attractive (a < 0) from repulsive (a > 0).

What have we left out?

For higher relative momentum (but still below the pwave threshold), need to know more than the scattering length.

Beyond the scattering length

A reduction in phase will mean a reduction in crosssection: $\sqrt{4}$

$$\sigma_0 = \frac{4\pi}{k^2} \sin^2 \eta_0$$

Ramsauer-Townsend effect: observation

cooling of 40K by 87Rb.

S. Aubin et al., Nature Physics 2, 384 (2006)

See also Dalibard; Salomon; Wieman

Equivalence of scattering potentials

Since the s-wave scattering results in only a single phase shift, parameterized by **a**, it doesn't matter what the full form of the scattering potential was!

Equivalence of scattering potentials

Since the s-wave scattering results in only a single phase shift, parameterized by \mathbf{a} , it doesn't matter what the full form of the scattering potential was!

Let's then consider a square well potential: We find:

I. Resonances at

 $bV = (n + 1/2)\pi$ when each new bound state appears.

2. Mostly a>0. Near a resonance when a<0 (eg, Li.)

Feshbach resonances

How can we tune the scattering length **a**?

Yes! We can tune a molecular bound state into resonance with the free atoms, and affect net phase acquired during the collision.

Result is indistinguishable from tuning the single-channel square well: it's only the phase that matters.

Feshbach resonances

How can we tune the scattering length **a**?

Yes! We can tune a molecular bound state into resonance with the free atoms, and affer which is a state into resonance with the state atoms.

Result is indistinguishable from tuning the single-channel square well: it's only the phase that matters.

Feshbach resonances

Near resonance the scattering length can be described as

$$a(B) = a_{\rm bg} \left(1 - \frac{\Delta}{B - B_0} \right)$$

s-wave cross section is

$$\sigma_0 = \frac{4\pi}{k^2} \sin^2 \eta_0$$

For a>0, a bound state exists with binding energy

$$E_b = \frac{\hbar^2}{2\mu a^2}$$

Unitarity

Near a Feshbach resonance, |a| diverges. The scattering cross section departs from its low-ka form:

$$\sigma = \frac{4\pi a^2}{1 + k^2 a^2} \to \frac{4\pi}{k^2}$$

This is just a manifestation of the optical theorem, which says that complete reflection corresponds to a finite scattering length. In terms of the de Broglie wavelength,

$$\sigma_{\rm res} = \lambda_{dB}^2 / \pi$$

You may be more familiar with the resonant atom-photon cross section (which has different constants because it is a vector instead of scalar field): $\sigma_{\rm res} = \frac{3}{2\pi} \lambda_L^2$

Unitarity

For a many-body system, resonant interactions also saturate but are less easy to quantify. Certainly it is the case that a divergent **a** can no longer be a relevant physical quantity to the problem.

For fermions, the only remaining length scale is k_F^{-1} .

This means that interaction energies must scale with the Fermi E. In particular, for resonant attractive interactions,

$$u_{\rm Local} = (1+\beta)\epsilon_F$$

where $\beta \approx -0.58$ has been measured in various experiments. Using the LDA to integrate over the profile, we find

$$\mu_U = \sqrt{1+\beta}E_{\rm F}$$
$$\approx 0.65E_{\rm F}$$

Strongly repulsive Fermi gas

Strongly repulsive Fermi gas

Strongly repulsive Fermi gas

Basic physics of ferromagnetism

Total energy = single-particle energy + interaction energy

$$E_{\rm tot} = \hbar\omega \sum n_i + E_{\rm int} N_{\rm O} N_{\rm O}$$

For example, what configuration minimizes energy for 4 particles ?

3.5

Mean field calculation of energies

$$E[\{\rho_{\sigma}(\mathbf{r})\}] = \int d^{3}\mathbf{r} \begin{bmatrix} \frac{3}{5} \sum_{\sigma} \frac{\hbar^{2} (6\pi^{2} \rho_{\sigma})^{2/3}}{2m} \rho_{\sigma}(\mathbf{r}) + V(\mathbf{r}) \sum_{\sigma} \rho_{\sigma}(\mathbf{r}) + g\rho_{\uparrow}(\mathbf{r})\rho_{\downarrow}(\mathbf{r}) \end{bmatrix}$$

kinetic energy, like $\frac{\hbar^{2} k_{F}^{2}(\mathbf{r})}{2m}$ potential energy interaction interaction energy $g = \frac{4\pi a\hbar^{2}}{2m}$

Comparison to TF ansatz energies

Comparison to TF ansatz energies

Broken symmetry! e.g.

 $N_{\downarrow}: N/2 \rightarrow 0$ $N_{\uparrow}: N/2 \rightarrow N$

recall

$$E_{\rm F} = \hbar \omega (6N_{\sigma})^{1/3}$$

Experimental Observations

G B Jo, Y. R. Lee, J. H. Choi, C. Christiensen, H. Kim, J. H. Thywissen, D. Pritchard, W. Ketterle, Science **325**, 1521 (2009)

Competitive instabilities

Pekker...Demler:"Competition between pairing and ferromagnetic instabilities in ultracold Fermi gases near Feshbach resonances". arXiv:1005.2366

Competitive instabilities

Pekker...Demler:"Competition between pairing and ferromagnetic instabilities in ultracold Fermi gases near Feshbach resonances". arXiv:1005.2366

Summary & Conclusion

Overview of trapped cold atoms

I. Non-interacting quantum gases

Thermal DFG;T=0 limit; Bose gases

2. Interacting bosons

GPE; Gaussian Ansatz; TF solution; LDA idea & validity; Hydrodynamics

3. Interacting fermions

Spin degrees of freedom; Mean field variational solution; Scattering theory & unitarity; Feshbach resonances; BEC-BCS crossover; Repulsive gases: Ferromagnetic?

Summary & Conclusion

Overview of trapped cold atoms

I. Non-interacting quantum gases

Thermal DFG;T=0 limit; Bose gases

2. Interacting bosons

GPE; Gaussian Ansatz; TF solution; LDA idea & validity; Hydrodynamics

3. Interacting fermions

Spin degrees of freedom; Mean field variational solution; Scattering theory & unitarity; Feshbach resonances; BEC-BCS crossover; Repulsive gases: Ferromagnetic?

Quantum transport in a double well

Summary & Conclusion

Overview of trapped cold atoms

I. Non-interacting quantum gases

Thermal DFG;T=0 limit; Bose gases

2. Interacting bosons

GPE; Gaussian Ansatz; TF solution; LDA idea & validity; Hydrodynamics

3. Interacting fermions

Spin degrees of freedom; Mean field variational solution; Scattering theory & unitarity; Feshbach resonances; BEC-BCS crossover; Repulsive gases: Ferromagnetic?

Quantum transport in a double well

Non-monotonic energetics of a strongly interacting DFG: FM??

Magnetic Field [G]

Interaction Parameter k_Fa

815

818

800

750 780

600

ш

Energy [

Kinetic I

0.50

0.45

0.40

0.35

Group members & collaborators

Group members: Alma Bardon Hai-Jun Cho Dylan Jervis Lindsay LeBlanc David McKay

Alex Piggot Felix Stubenrauch Alan Stummer Tilman Pfau (sabbatical visitor) JHT Former grad students & postdocs: Seth Aubin (William & Mary) Marcius Extavour (OSA congressional fellow) Jason McKeever (Entanglement Technologies) Stefan Myrskog (Morgan Solar) Karl Pilch Thorsten Schumm (TU Vienna) Michael Sprague (Oxford)

JHT Postdoc positions available!

<u>Collaborators:</u> **F. Piazza, A. Smerzi** (Trento) Arun Paramekanti (Toronto), A. Burkov (Waterloo) N. Proukakis (Newcastle), E. Zaremba (Queens) OLE collaboration MIT experimental group

Gyu-Boong Jo Ye-Ryoung Lee

Jae-Hoon Choi Caleb A. Christensen Tony H. Kim David Pritchard **Wolfgang Ketterle**

References

Review papers & textbooks:

•F. Dalfovo, S. Giorgini, L. Pitaevskii, S. Stringari, "Theory of Bose-Einstein condensation in trapped gases" *Rev. Mod. Phys.* **71**, 463 (1999).

•Y. Castin, "Bose-Einstein condensates in atomic gases: simple theoretical results" Les Houches Lectures 1999 [cond-mat/ 0105058].

- •Pethick & Smith, Bose-Einstein Condensation (Cambridge, 2002).
- •Ketterle and Zwierlein. "Making, probing and understanding ultracold Fermi gases". [arXiv:0801.2500v1]
- •Extavour, ... Thywissen, "Fermions on atom chips" in Atom Chips, J. Reichel, V. Vuletic, eds., (Wiley: in press) [arXiv:0811.1401]
- •Chin et al. Feshbach resonances in ultracold gases. Rev. Mod. Phys. (2010) vol. 82 (2) pp. 1225-1286.

Experiments discussed in these lectures:

•S. Aubin, S. Myrskog, M.H.T. Extavour, L. J. LeBlanc, D. McKay, A. Stummer, and J. H. Thywissen, "Rapid sympathetic cooling to Fermi degeneracy on a chip" *Nature Physics* **2**, 384 (2006)

•G B Jo, Y. R. Lee, J. H. Choi, C. Christiensen, H. Kim, J. H. Thywissen, D. Pritchard, W. Ketterle, "Itinerant Ferromagnetism in a Fermi Gas of Ultracold Atoms" Science **325**, 1521 (2009).

•see also 'news&views' by W Zwerger, Science 325, 1508 (2009)

•L. J. LeBlanc, A. B. Bardon, J. McKeever, M. H.T. Extavour, D. Jervis, J. H. Thywissen, F. Piazza, A. Smerzi "Dynamics of a tunable superfluid junction" [arXiv:1006.3550]

Theoretical work on putative ferromagnetism in cold atoms

H. Stoof et al, PRL 76, 10 (1996); PRA 56, 4864 (1997)

T. Sogo, H. Yabu *Phys Rev* A **66** (2002)

R.A. Duine, A. H. MacDonald, Phys. Rev. Lett. 95, 230403 (2005) & references therein

G. J. Conduit, B. D. Simons et al: PRA 79, 053606 (2009); PRL 103, 207201 (2009); PRL 103, 200403 (2009)

I. Berdnikov, P. Coleman, S. Simon Phys Rev B 79, 224403 (2009)

L. J. LeBlanc, J. H. Thywissen, A. A. Burkov, A. Paramekanti, Phys Rev A 80, 013607 (2009).

M. Badadi, D. Pekker, R. Sensarma, A. Georges, E. Demler arXiv:0908.3483 (2009)

X. L. Cui, H. Zhai Phys Rev A 81, 041602 (2010); H. Zhai Phys Rev A 81, 051606 (2009)

G J Conduit, B D Simons, Phys Rev Lett 103, 200403 (2010)

S. Pilati, G. Bertaina, S. Giorgini, and M. Troyer, arXiv:1004.1169 (2010)

S.-Y. Chang, M. Randeria, N. Trivedi, arXiv:1004.2680 (2010)

D. Pekker, M Babadi, R Sensarma, N Zinner, L Pollet, M W Zwierlein, E Demler: "Competition between pairing and ferromagnetic instabilities in ultracold Fermi gases near Feshbach resonances". arXiv:1005.2366 (2010)