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Motivation

Hydra A Cluster (Chandra)
T~3keV, n~102 cm>

Large electron mean free path:
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Conduction important on scales:
L <7(M\H)Y?




Outline

e Linear Physics of MTIl and HBI

e Nonlinear Saturation

¢ |Interaction with External Sources of Turbulence




Outline

e Linear Physics of MTI and HBI

e Nonlinear Saturation

¢ |Interaction with External Sources of Turbulence




Linear Evolution of the MTI

Temperature (t = 0)

e Would be stable if adiabatic. 3s/dz > 0

e Efficient conduction along magnetic
field lines = field lines isothermal.

e New stability criterion:
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(displacements isothermal rather
than adiabatic)

e Timescale for perturbations grow:

OlnT\ /2
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(Balbus, 2000; Parrish & Stone, 2005)



Linear Evolution of the MTI

Temperature (t = 0) Temperature (t = 5 tpuoy)




Linear Evolution of the H
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e \Would be stable if adiabatic

e Stable according to MTI criterion

e Constant heat flux ()
“V-Q=0

e Perturbations to Q can cause
instability

e Timescale for perturbations grow:

OlnT\ ~Y/?
th_Oy — g az

(same as MTI)

(Quataert, 2008; Parrish & Quataert, 2008)



Linear Evolution of the HBI
ature (t = 5 tpuoy
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Saturation of the H
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Saturation of the HBI




Velocities in the Saturated State of the HBI

Limit that b, — O:

w2 = wﬁuoy (1 — I%g)
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Velocities in the Saturated State of the H




Magnetic Field in the Saturated State of the H
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Nonlinear Evolution of the MT]

Saturation is not quiescent.




—quilibrium State of the MTI

Limit that b, = 1.

w2 = wlz)uoy (1 — l%g)

e Same dispersion relation as the HB

e Stable stratification = horizontal

displacements unaffected.




—quilibrium State of the MTI
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—quilibrium State of the MTI
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At late times, can't tell whether or not the plasma was
initially stable.




Magnetic Field in the Saturated State of the MTH

Vertical Field

Horizontal Field
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Turbulence Generated by the MT]
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e MTI can drive ~ sonic turbulence

e Answer depends on size of
simulation domain; need boxes of
order H to get the right answer.

e Strong turbulence + magnetic fields

= 10s of % non-thermal pressure
support
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Saturated Field Angles

Strong turbulence
Isotropizes the field

Isotropic

HBI dominates when
turbulence is weak

Transition when
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Conclusions

e HBI and MTI both operate in clusters

e HBI saturates by reorienting the magnetic field, but the MTI does not

e MTI is a powerful dynamo and drives strong turbulence

¢ |Interaction between HBI and turbulence determines suppression of the
conductive flux




