Elastic Hadron Scattering & Alan Krisch
Cornell & Michigan
1963 - 1971

Carl W. Akerlof
University of Michigan
Elastic scattering cross sections

(all variables are in the C-M frame)

Kinematics:

\[|q| = |p_f - p_i| = 2p_{CM} \sin \left(\frac{\theta}{2} \right) = \sqrt{-t} \]

\[p_{\perp} = p_{CM} \sin (\theta_{CM}) = 2p_{CM} \sin \left(\frac{\theta_{CM}}{2} \right) \cos \left(\frac{\theta_{CM}}{2} \right) \]

\[q \times r / \hbar c \approx 5 \left(q / 1 \text{ GeV/c} \right) \left(r / 1 \text{ Fm} \right) \]

Rutherford scattering:

\[\frac{d\sigma}{dq} = 8\pi \left(\frac{Z_1Z_2\alpha\hbar c}{\beta} \right)^2 \frac{1}{|q|^3} \quad ; \quad \beta = \frac{p_{CM}}{E_{CM}} \]

Rigid sphere collisions:

\[\frac{d\sigma}{dq} = \sigma_{tot} \frac{|q|}{2p^2} \]
Technical Background…

Bubble chamber invented by Don Glaser in 1952. Greater than 10^6 exposures were extremely onerous → only channels with $\sigma > 0.1$ µbarn.

Higher energy accelerators and strong focusing magnets enabled smaller emittance particle beams.

Fast transistors developed in the early ’60s permitted compact 100 MHz electronic logic.
Early Significant Experiments

1963 p-p elastic scattering at large momentum transfers and

1965 large-angle π-p elastic scattering at high energies

1966 measurement of π⁻-p elastic scattering at 180°

1967 elastic p-p elastic scattering at 90° and proton structure

1967 π, K, and p̅ production in the C-M in high energy p-p collisions
Phys. Rev. 166, 1353-1364 (1968)
p – p scattering at the AGS
L-R telescopes coincidence logic

L-R time-of-flight correlation
Some parameters of the AGS p – p elastic scattering experiment

10^{11} protons on internal target, ~ 100 multiple traversals permit ~ 10 cm path length in CH$_2$

$\mathcal{L} \sim 10^{35}$ cm$^{-2}$ s$^{-1}$ \hspace{1cm} (Tevatron $\sim 10^{32}$ cm$^{-2}$ s$^{-1}$)

$\int \mathcal{L} \, dt \sim 10^{40}$ cm$^{-2}$ \hspace{1cm} (one day)

Lowest cross section: $d\sigma/d\Omega_{cm} = 1.1 \times 10^{-36}$ cm2 sr$^{-1}$

$d\Omega_{cm} \sim 3 \times 10^{-3}$ sr \Rightarrow Lowest number of events ~ 25
normalized $d\sigma/d\Omega_{cm}$ vs. t

$d\sigma/d\Omega_{cm}$ vs. p_\perp
PROTON-PROTON SCATTERING AND STRONG INTERACTIONS

Alan D. Krisch
Laboratory of Nuclear Studies, Cornell University, Ithaca, New York
(Received 5 June 1963; revised manuscript received 9 August 1963)

There has recently been considerable interest in the high-energy differential cross section of strongly interacting particles. We will show that for proton-proton scattering the existing data can be fit by a simple function which can be understood in terms of a simple model.

We consider the differential cross section for elastic proton-proton scattering, which is normalized according to

\[X(s, t) = \frac{d\sigma/dt}{d\sigma/dt|_{t=0}^{\text{opt}}} = \frac{d\sigma/d\Omega}{d\sigma/d\Omega|_{\theta=0}^{\text{opt}}}, \]

where \(d\sigma/d\Omega_{\theta=0}^{\text{opt}} = k^2 \sigma_{\text{tot}}^2 / 16 \pi^2 \).

Exponential fit:

\[X(s, p_{\perp}^2) = A e^{-a p_{\perp}^2} + B e^{-\beta p_{\perp}^2} \]
π-p elastic scattering at high energies
(8 – 12 GeV/c)

Fig. 3. Layout for Geometry 1. Several different magnet positions were used to obtain different regions of scattering angle.

Fig. 4. Layout for Geometry 2 which was used for scattering angles up to 81° in the center-of-mass system.

Fig. 5. Layout for Geometry 3 which was used for scattering angles near 180°.
Fig. 6. Angular distributions for π^-p elastic scattering at lab momenta of 3.63, 8, and 12 GeV/c. Curves are drawn only as a guide.

Fig. 7. Angular distributions for π^+p elastic scattering at lab momenta of 4, 8, and 12 GeV/c. Curves are drawn only as a guide.
$\pi^\pm - p$ backward elastic scattering near 180°

\[\frac{d\sigma}{d\theta} \text{ in } \mu b (\text{GeV}/c)^2 \]

u in $(\text{GeV}/c)^2$

- 4 GeV/c
- 8 GeV/c

\[\pi^+ \rightarrow n, p \]
\[\pi^- \rightarrow \Delta^{++}, p \]
π⁻ - p backward elastic scattering

(1.6 – 5.3 GeV/c)
Fig. 3. Experimental layout; the incident protons come down the extracted beam and strike the target. The scattered protons pass out through the magnets and scintillation counters.

elastic p-p scattering at 90° and proton structure

(5.0 – 13.4 GeV/c)
Fig. 8. Plot of $d\sigma/d\Omega$ versus $P_{\text{c.m.}}$ for 90° proton-proton elastic scattering. Other data (Refs. 20, 22, 23) are also plotted. The line drawn is the straight line fit suggested by the statistical model.

Fig. 10. Plot of $d\sigma/dt$ versus $P_{\text{c.m.}}^2$ for proton-proton elastic scattering at 90°, comparing it to electron-proton elastic scattering at high momentum-transfer. The lines drawn are the straight line fits to the proton-proton data. The electron-proton data (Ref. 44) are plotted as the fourth power of the form factor, and are normalized to the proton-proton cross section.
π, K, and \(p \) production in the C-M in high energy p-p collisions

(12.5 GeV/c)
particle production experiment fast logic and controls
Fig. 11. Plot of $d^2\sigma/d\Omega dp$ against P_t^2 for $P_t^{c.m.}$ held fixed. The production cross sections for π^+, π^-, K^+, K^-, and antiprotons are shown. The lines are straight-line fits to the data.

Fig. 12. Plot of $d^2\sigma/d\Omega dp$ against P_t for P_t^2 held fixed. The cross sections for π^+, π^-, K^+, K^- production are shown. The lines are freehand fits to the data.
Alan Krisch’s Cornell transportation
All Best Wishes...