GOLDMAN, RACHEL
(University of Michigan)

Effective Masses in Dilute Nitride Bismide Semiconductor Alloys: Failure of the Band Anti-Crossing Model?
Tassilo Dannecker1,2,3, Yu Jin2,3, Hailing Cheng3, Charlie F. Gorman2, John Buckeridge1, Ctirad Uher3, Stephen Fahy1,3, Cagliyan Kurdak3, Rachel S. Goldman2,3
1Tyndall National Institute, University College Cork, Cork, Ireland
2Department of Materials Science and Engineering, University of Michigan, Ann Arbor, Michigan 48109-2136, USA
3Physics Department, University of Michigan, Ann Arbor, Michigan 48109-1040, USA

Abstract: The semi-empirical band anti-crossing (BAC) model proposed by Shan et al has successfully explained the bandgap bowing effect in both dilute nitride and dilute bismide semiconductor alloys. Within this model, a higher (lower) lying localized N (Bi) band interacts with the extended host semiconductor band resulting in a split of the CB (VB) into two sub-bands. Although the BAC model qualitatively predicts the N composition dependence of the GaAsN bandgap, it does not quantitatively explain several extraordinary optical and electronic properties of GaAsN and related alloys. We have investigated the N-composition, x, and T-dependence of the electron effective mass, m^*, of GaAs\textsubscript{1-x}N\textsubscript{x}. Using Seebeck and Hall measurements, in conjunction with assumptions of parabolic bands and Fermi-Dirac statistics, we find a non-monotonic dependence of m^* on x and an increasing m^* T-dependence with x. These trends are not predicted by the two-state BAC model but instead are consistent with the predictions of the linear-combination of resonant nitrogen states model, which takes into account several N-related states and their interaction with the GaAs conduction-band edge. Similar effects for the hole effective mass will be discussed in the GaAsBi system.