Imaging and Spectroscopy of Active Galactic Nuclei with Double-Peaked Emission Lines:

Searching for Dual AGN

Rosalie McGurk UC Santa Cruz

Claire Max (UCSC), Greg Shields (UT Austin), Shelley Wright (UC Berkeley), David Rosario (MPE), Krista Smith (UT Austin)

August 24, 2011

Outline

- Why do we expect to see dual AGN?
- At what separations have AGN pairs been found already?
- Our Data and Analysis
 - Sample selection
 - NIRC2 images
 - OSIRIS spectra
- Conclusions

Outline

- Why do we expect to see dual AGN?
- At what separations have AGN pairs been found already?
- Our Data and Analysis
 - Sample selection
 - NIRC2 images
 - OSIRIS spectra
- Conclusions

Most Massive Galaxies Harbor Supermassive Black Holes

Richstone et al. 1998Kormendy & Richstone 1995

Sometimes not actively accreting

Sometimes actively accreting = Active Galactic Nuclei (AGN)

Mergers Cause Gas to Flow to Galaxy Centers, Trigger BH Accretion

AGN pairs from galaxy mergers should be observable

- Example of a double AGN discovered by Green et al.
 2010
 - Separation =21 kpc

Why are dual AGN important?

- the existence and statistics of dual AGN provide a probe into:
 - hierarchical galaxy formation models
 - accretion-triggering mechanisms
 - galaxy merger rates
 - AGN duty cycles

Outline

- Why do we expect to see dual AGN?
- At what separations have AGN pairs been found already?
- Our Data and Analysis
 - Sample selection
 - NIRC2 images
 - OSIRIS spectra
- Conclusions

Most Observed AGN Pairs Have Separations > 10 kpc

Paper	Number of AGN Pairs	Separations (kpc)	Z
Myers et al. 2007	72	12 < R < 49	0.5-2
Myers et al. 2008	11	23.7 < R < 30	1.7-2
Hennawi et al. 2010	24	10 < R < 650	3-4.3
Green et al. 2010	1	21	0.44

Green et al. 2010

At what separations are AGN pairs found?

Not Many Candidate AGN Pairs Have Separations < 0.01 kpc

Paper	Number of AGN Pairs	Separations (kpc)	Z
Rodriquez et al. 2006	1	0.0073	0.06
Boroson & Lauer 2009	1	0.0001	0.39
Decarli et al. 2010	1	0.00006	0.42

At what separations are AGN pairs found?

0.1 kpc < Separations < 10 kpc Confirmed AGN Pairs

Paper	Number of AGN Pairs	Separations (kpc)	Z
Junkkarinen et al. 2001	1	2.3	0.85
Komossa et al. 2003	1	0.75	0.02
Ballo et al. 2004	1	4.6	0.01
Gerke et al. 2007	1	1.2	0.71
Bianchi et al. 2008	1	3.8	0.05
Liu et al. 2010	4	1.5 < R < 6.3	0.07
Koss et al. 2011	1	3.4	<0.2

At what separations are AGN pairs found?

<10pc >> >>

Adaptive Optics allows us to resolve these separations! 1kpc

>10kpc

Why is Adaptive Optics (AO) needed?

- Adaptive Optics
 - Increases peak intensity
 - Creates tight cores

Needed to resolve dual AGN at 0.1 < z < 0.6 with 1 kpc separations

0.1 kpc < Separations < 15 kpc

Candidate AGN Pairs

Paper	Number of AGN Pairs	Separations (kpc)	Z
Fu et al. 2011b	31	0.5 < R < 18	<0.6
Rosario, McGurk et al.	6	3.5 < R < 12	<0.6
2011			

Outline

- Why do we expect to see dual AGN?
- At what separations have AGN pairs been found already?
- Our Data and Analysis
 - Sample selection
 - NIRC2 images
 - OSIRIS spectra
- Conclusions

Two Ways to Select Potential AGN Potential AGN Pairs Pairs

bserving velocity offsets between tw emission lines (e.g. [O III]), potential from two AGN

maging of multiple AGN in a single host galaxy

To Confirm a Dual AGN...

 Each spatially resolved component must have a unique AGN spectrum

Green et al. 2010

We chose our sample spectroscopically from Smith et al.

- SDSS spectra
- Primary criteria:
 - double in both
 [O III] λ5007
 and λ4959
 - consistent
 with 3:1
 intensity ratio

Smith et al. 2010

We require our targets to be Type 1 and Radio-Quiet to avoid Jet Interactions

- FIRST radio survey detects radio flux for:
 - 9% of overall SDSS quasar catalogue
 - 27% of Smith et al. objects

- Radio-loud quasars are 3x more likely to be double-peaked than radio-quiet quasars
 - Suggests jet interactions produce some double structure (as discussed in Rosario et al. 2009)

Smith et al. 2010

Outline

- Why do we expect to see dual AGN?
- At what separations have AGN pairs been found already?
- My Data and Analysis
 - Sample selection
 - NIRC2 images
 - OSIRIS spectra
- Conclusions

0.54" sep

4 kpc

1.0"

sep

3" SDSS fiber

Close Doubles

11248-0257

More Separated Doubles

3" SDSS fiber

2.0"

<u>4 kpc</u>

Instead... collapse horizontally to the [O III]/Hβ ratio

Figure courtesy of Jerome Fang

Ambiguous: AGN

Major mergers Minor mergers No double spatial structure

= best estimate \bigcirc = 2 σ lower limit

Both spectral components of our merger candidates are AGN (with one exception)

Combining Samples for Better Statistics

• Our sample:

20

— 6/12 Type 1 radio-quiet AGN are doubles (≈50%)

- When I combine our sample with Fu et al. 2011: — 9/28 Type 1 radio-quiet AGN are doubles (≈32%)
- 1% of SDSS AGN have double-peaked [OIII]
- 0.3% of SDSS AGN have two spatially-separated components
- Agrees with predictions by Yu et al. 2011

In the next section I will discuss how to confirm spatially-separated components as actual dual AGN

Outline

- Why do we expect to see dual AGN?
- At what separations have AGN pairs been found already?
- Our Data and Analysis
 - Sample selection
 - NIRC2 images
 - OSIRIS spectra
- Conclusions

Why are spatially resolved spectra needed?

31

 SDSS spectra are spatially unresolved [O III] 4959, 5007Å

What else can candidate dual AGN be?

- Chance superposition of two objects
- -Recoiling SMBH
- Jets interacting with the surrounding medium
- -Outflows
- -Gravitational lenses
- Starburst

Spatially resolved spectroscopy is needed to distinguish between them

Guedes et al. 2010

We observed J0952+2552 with OSIRIS

- Separation = 1.0" = 4.81 kpc
- $M_{\rm BH} = 1 \times 10^8 M_{\odot}$
- Redshift = 0.339

- Spectra taken at every pixel
- J, H broadband

4kpc

0.5"

OSIRIS spectra will answer two questions:

 Do the redshifts of the visible spatial structures match the double peaks of the SDSS emission lines?

2. What types of objects are the bright galaxy and the companion: Type 1 or 2 AGN, or a starburst?

[S III] λ 953.4 and λ 907.3 nm in **J**...

And Paß and [Fe II] $\lambda 1257$ nm in H. [Fe II] Paß

Using the narrow lines to measure redshifts...

Redshift error = ±0.00014

Spectral line:	Bright Galaxy	Companion
[S III] 9073 Å	0.33797	0.3398
[Fe II] 9188 Å	0.33786	
[S III] 9534 Å	0.33792	0.3397
[Fe II] 1.2570 μm	0.33842	
Ра β	0.33840	0.3397
SDSS [O III] red		0.3399
SDSS [O III] blue	0.3380	

Using the narrow lines to measure redshifts...

Redshift error = ±0.00014

Spectral line:	Bright Galaxy	Companion
[S III] 9073 Å	0.33797	0.3398
[Fe II] 9188 Å	0.33786	
[S III] 9534 Å	0.33792	0.3397
[Fe II] 1.2570 μm	0.33842	
Ра β	0.33840	0.3397
SDSS [O III] red		0.3399
SDSS [O III] blue	0.3380	

Using the narrow lines to measure redshifts...

Redshift error = ±0.00014

Spectral line:	Bright Galaxy	Companion
[S III] 9073 Å	0.33797	0.3398
[Fe II] 9188 Å	0.33786	
[S III] 9534 Å	0.33792	0.3397
[Fe II] 1.2570 μm	0.33842	
Pa β	0.33840	0.3397
SDSS [O III] red		0.3399
SDSS [O III] blue	0.3380	

The double spatial structure corresponds to the SDSS double-peaked emission lines!

Broad Paß and AGN type

40

Is the companion an AGN or a starburst?

McGurk et al. 2011

Is the companion an AGN or a starburst?

Conclusions for J0952+2552

- Bright galaxy and companion correspond to double [O III] peaks
- Main = Type 1 AGN
- Companion = Type 2 AGN

Confirmed 1 Dual AGN!

• Now repeat for other objects!

Conclusions

- Imaging:
 - Of the 12 Type 1 radio-quiet AGN examined, 50% have merger activity
 - Based on the SDSS emission line ratios, both spectral components are AGN

- Spatially Resolved Spectroscopy:
 - Bright galaxy and companion correspond to the double [O III] peaks
 - J0952+2552 is a dual AGN!

Open Questions:

- How does the AGN duty cycle affect the detectability of dual AGN? At what separations are both of the AGN bright, and for how long?
- What indicators should be used to find more close dual AGN?
- What fraction of AGN are actually in mergers?