A Supermassive Black Hole in the Dwarf Starburst Galaxy Henize 2-10

Amy Reines
Einstein Fellow
National Radio Astronomy Observatory
Supermassive black holes and galaxy evolution

- Supermassive black holes reside in the nuclei of essentially all massive galaxies with a bulge (e.g. Kormendy & Richstone 1995; Magorrian et al. 1998; Kormendy 2004)

\[M_{BH} \sim 1.4 \times 10^8 \, M_{\text{sun}} \] (Bender et al. 2005)

\[M_{BH} \sim 6.6 \times 10^9 \, M_{\text{sun}} \] (Gebhardt et al. 2011)
Supermassive black holes and galaxy evolution

- Supermassive black holes reside in the nuclei of essentially all massive galaxies with a bulge (e.g. Kormendy & Richstone 1995; Magorrian et al. 1998; Kormendy 2004)

- A link appears to exist between the evolution of galaxies and their central black holes (e.g. Gebhardt et al. 2000; Ferrarese & Merritt 2000; Gültekin et al. 2009; Heckman 2010)
Supermassive black holes and galaxy evolution

- Supermassive black holes reside in the nuclei of essentially all massive galaxies with a bulge (e.g. Kormendy & Richstone 1995; Magorrian et al. 1998; Kormendy 2004)
- A link appears to exist between the evolution of galaxies and their central black holes (e.g. Gebhardt et al. 2000; Ferrarese & Merritt 2000; Gültekin et al. 2009; Heckman 2010)

Some questions:

- Did galaxies and nuclear black holes grow synchronously? If not, which developed first?
Supermassive black holes and galaxy evolution

- Supermassive black holes reside in the nuclei of essentially all massive galaxies with a bulge (e.g. Kormendy & Richstone 1995; Magorrian et al. 1998; Kormendy 2004)

- A link appears to exist between the evolution of galaxies and their central black holes (e.g. Gebhardt et al. 2000; Ferrarese & Merritt 2000; Gültekin et al. 2009; Heckman 2010)

Some questions:

- Did galaxies and nuclear black holes grow synchronously? If not, which developed first?

- How did the “seeds” of supermassive black holes form in the earlier universe?

Volonteri (2010)
Supermassive black holes and galaxy evolution

• Supermassive black holes reside in the nuclei of essentially all massive galaxies with a bulge (e.g. Kormendy & Richstone 1995; Magorrian et al. 1998; Kormendy 2004)

• A link appears to exist between the evolution of galaxies and their central black holes (e.g. Gebhardt et al. 2000; Ferrarese & Merritt 2000; Gültekin et al. 2009; Heckman 2010)

Some questions:

• Did galaxies and nuclear black holes grow synchronously? If not, which developed first?

• How did the “seeds” of supermassive black holes form in the earlier universe?

• What are the early stages of black hole growth and galaxy evolution?

Possible seed formation mechanisms

Volonteri (2010)
Supermassive black holes and galaxy evolution

- Supermassive black holes reside in the nuclei of essentially all massive galaxies with a bulge (e.g. Kormendy & Richstone 1995; Magorrian et al. 1998; Kormendy 2004)

- A link appears to exist between the evolution of galaxies and their central black holes (e.g. Gebhardt et al. 2000; Ferrarese & Merritt 2000; Gültekin et al. 2009; Heckman 2010)

Some questions:

- Did galaxies and nuclear black holes grow synchronously? If not, which developed first?

- How did the “seeds” of supermassive black holes form in the earlier universe?

- What are the early stages of black hole growth and galaxy evolution?

- What is the nature of the supermassive black hole - globular cluster connection?
“An actively accreting massive black hole in the dwarf starburst galaxy Henize 2-10”

“Astrophysics: Big black hole found in tiny galaxy”
Greene 2011, Nature, 470, 45
Henize 2-10

- Nearby ($D \sim 9$ Mpc) dwarf starburst galaxy (Allen et al. 1976)
- Compact (~ 1 kpc), irregular morphology
- Young super star clusters (proto-globular clusters) (e.g. Johnson et al. 2000)
Henize 2-10

- Nearby (D~9 Mpc) dwarf starburst galaxy (Allen et al. 1976)
- Compact (~ 1 kpc), irregular morphology
- Young super star clusters (proto-globular clusters) (e.g. Johnson et al. 2000)
- Main optical body is about half the size of the SMC
- SFR ~ 10 times the LMC but similar stellar and HI masses
Observations

Infant super star clusters:
Youngest have ages \(\leq \) few Myr
and masses \(\sim 10^5 \, M_{\odot} \)

HST 3-color optical image (archival data):

- F330W (0.3 microns)
- F814W (0.8 microns)
- F658N (H alpha)
Observations

HST 3-color optical image (archival data):
- F330W (0.3 microns)
- F814W (0.8 microns)
- F658N (H alpha)

New data

VLA 3.5 cm
HST Paschen alpha

~ 6 arcsec, 250 pc
Observations

HST 3-color optical image (archival data):
- F330W (0.3 microns)
- F814W (0.8 microns)
- F658N (H alpha)

New focus: the central source

VLA 3.5 cm
HST Paschen alpha

~ 6 arcsec, 250 pc
The central source in Henize 2-10

Narrow-band imaging (ionized gas)
- Paschen alpha line emission (1.87 microns)
- H alpha line + continuum (0.66 microns)
- 3.5 cm contours

Broad-band imaging (stars)
- NIC2 F205W (2.1 microns)
- ACS/HRC F814W (0.8 microns)
- 3.5 cm contours
Compact (< 24 pc x 9 pc) non-thermal (synchrotron) radio emission (Johnson & Kobulnicky 2003)

Radio source is not associated with a visible star cluster

Hard X-ray Chandra point source coincident with radio source (Ott et al. 2005, Kobulnicky & Martin 2010)

Local peak in Paschen alpha and H alpha emission

Appears connected to a thin quasi-linear feature between two bright blobs

At center of ionized gas structure with a coherent velocity gradient (Henry et al. 2007)

Position consistent with dynamical center (from HI solid-body rotation (Kobulnicky et al. 1995))

The central source in Henize 2-10

Narrow-band imaging (ionized gas)

Paschen alpha line emission (1.87 microns)

H alpha line + continuum (0.66 microns)

3.5 cm contours

1 arcsec (44 pc)

Broad-band imaging (stars)

NIC2 F205W (2.1 microns)

ACS/HRC F814W (0.8 microns)

3.5 cm contours
The central source in Henize 2-10

Wide-Field Radio Image of the Galactic Center
$\lambda = 90$ cm
(Kassim, LaRosa, Lazio, & Hyman 1999)

Radio image of the Galactic Center
The central source in Henize 2-10

Radio image of the Galactic Center

24 pc x 9 pc beam
The central source in Henize 2-10

• Compact (< 24 pc x 9 pc) non-thermal (synchrotron) radio emission (Johnson & Kobulnicky 2003)
• Radio source is not associated with a star cluster even in deep near-IR imaging
The central source in Henize 2-10

- Compact (< 24 pc x 9 pc) non-thermal (synchrotron) radio emission (Johnson & Kobulnicky 2003)
- Radio source is not associated with a star cluster even in deep near-IR imaging
- Hard X-ray Chandra point source coincident with radio source (Ott et al. 2005, Kobulnicky & Martin 2010)
Hubble Space Telescope

Very Large Array radio telescope

Chandra X-ray Observatory

Images from http://chandra.harvard.edu/press
Central region strongly emitting radio waves and energetic X-rays
The central source in Henize 2-10

- Compact (< 24 pc \times 9 pc) non-thermal (synchrotron) radio emission (Johnson & Kobulnicky 2003)
- Radio source is not associated with a star cluster even in deep near-IR imaging
- Hard X-ray Chandra point source coincident with radio source (Ott et al. 2005, Kobulnicky & Martin 2010)
- Local peak in Paschen alpha and H alpha emission
- Compact (< 24 pc x 9 pc) non-thermal (synchrotron) radio emission (Johnson & Kobulnicky 2003)
- Radio source is not associated with a star cluster even in deep near-IR imaging
- Hard X-ray Chandra point source coincident with radio source (Ott et al. 2005, Kobulnicky & Martin 2010)
- Local peak in Paschen alpha and H alpha emission
- Appears connected to a thin quasi-linear feature between two bright blobs
The central source in Henize 2-10

- Compact (< 24 pc x 9 pc) non-thermal (synchrotron) radio emission (Johnson & Kobulnicky 2003)
- Radio source is not associated with a star cluster even in deep near-IR imaging
- Hard X-ray Chandra point source coincident with radio source (Ott et al. 2005, Kobulnicky & Martin 2010)
- Local peak in Paschen alpha and H alpha emission
- Appears connected to a thin quasi-linear feature between two bright blobs
- At center of ionized gas structure with a coherent velocity gradient (Henry et al. 2007)
• Compact (< 24 pc x 9 pc) non-thermal (synchrotron) radio emission (Johnson & Kobulnicky 2003)
• Radio source is not associated with a star cluster even in deep near-IR imaging
• Hard X-ray Chandra point source coincident with radio source (Ott et al. 2005, Kobulnicky & Martin 2010)
• Local peak in Paschen alpha and H alpha emission
• Appears connected to a thin quasi-linear feature between two bright blobs
• At center of ionized gas structure with a coherent velocity gradient (Henry et al. 2007)
• Position consistent with dynamical center (from HI solid-body rotation (Kobulnicky et al. 1995))
The central source in Henize 2-10

- Compact (< 24 pc x 9 pc) non-thermal (synchrotron) radio emission (Johnson & Kobulnicky 2003)
- Radio source is not associated with a star cluster even in deep near-IR imaging
- Hard X-ray Chandra point source coincident with radio source (Ott et al. 2005, Kobulnicky & Martin 2010)
- Local peak in Paschen alpha and H alpha emission
- Appears connected to a thin quasi-linear feature between two bright blobs
- At center of ionized gas structure with a coherent velocity gradient (Henry et al. 2007)
- Position consistent with dynamical center (from HI solid-body rotation (Kobulnicky et al. 1995))

Active Galactic Nucleus

Narrow-band imaging (ionized gas)

- Paschen alpha line emission (1.87 microns)
- H alpha line + continuum (0.66 microns)
- 3.5 cm contours

Broad-band imaging (stars)

- NIC2 F205W (2.1 microns)
- ACS/HRC F814W (0.8 microns)
- 3.5 cm contours

I arcsec (44 pc)
Ruling out alternative explanations
Ruling out alternative explanations

Radio luminosity

\[L_R (5 \text{ GHz}) \sim 7.4 \times 10^{35} \text{ erg s}^{-1} \]

Hard X-ray luminosity

\[L_X (2-10 \text{ keV}) \sim 2.7 \times 10^{39} \text{ erg s}^{-1} \]

Very Large Array radio telescope

Chandra X-ray Observatory
Ruling out alternative explanations

<table>
<thead>
<tr>
<th>Radio luminosity</th>
<th>Hard X-ray luminosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_R (5 \text{ GHz}) \sim 7.4 \times 10^{35} \text{ erg s}^{-1}$</td>
<td>$L_X (2-10 \text{ keV}) \sim 2.7 \times 10^{39} \text{ erg s}^{-1}$</td>
</tr>
</tbody>
</table>

Ratio of radio to X-ray luminosity:

$$R_X = \nu L_\nu (5 \text{ GHz}) / L_X (2 - 10 \text{ keV})$$
(Terashima & Wilson 2003)

The central source in Henize 2-10:

$$\log R_X \sim -3.6$$
Ruling out alternative explanations

<table>
<thead>
<tr>
<th>Radio luminosity</th>
<th>Hard X-ray luminosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>(L_R (5 \text{ GHz}) \sim 7.4 \times 10^{35} \text{ erg s}^{-1})</td>
<td>(L_X (2-10 \text{ keV}) \sim 2.7 \times 10^{39} \text{ erg s}^{-1})</td>
</tr>
</tbody>
</table>

Ratio of radio to X-ray luminosity:

\[
R_X = \frac{\nu L_\nu (5 \text{ GHz})}{L_X (2-10 \text{ keV})}
\]

(Terashima & Wilson 2003)

The central source in Henize 2-10:
\[
\log R_X \sim -3.6
\]

Typical low-luminosity AGN:
\[
\log R_X \sim -2.8 \text{ to } -3.8 \quad \text{(Ho 2008)}
\]
Ruling out alternative explanations

<table>
<thead>
<tr>
<th>Radio luminosity</th>
<th>Hard X-ray luminosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_R (5 \text{ GHz}) \sim 7.4 \times 10^{35} \text{ erg s}^{-1}$</td>
<td>$L_X (2-10 \text{ keV}) \sim 2.7 \times 10^{39} \text{ erg s}^{-1}$</td>
</tr>
</tbody>
</table>

Ratio of radio to X-ray luminosity:

$$R_X = \nu L_\nu (5 \text{ GHz}) / L_X (2-10 \text{ keV})$$
(Terashima & Wilson 2003)

The central source in Henize 2-10:
log $R_X \sim -3.6$

X-ray binaries: too weak in the radio
log $R_X < -5.3$

Typical low-luminosity AGN:
log $R_X \sim -2.8$ to -3.8
(Ho 2008)
Ruling out alternative explanations

<table>
<thead>
<tr>
<th>Radio luminosity</th>
<th>Hard X-ray luminosity</th>
</tr>
</thead>
<tbody>
<tr>
<td>$L_R(5 \text{ GHz}) \sim 7.4 \times 10^{35} \text{ erg s}^{-1}$</td>
<td>$L_X(2-10 \text{ keV}) \sim 2.7 \times 10^{39} \text{ erg s}^{-1}$</td>
</tr>
</tbody>
</table>

Ratio of radio to X-ray luminosity:

\[
R_X = \frac{\nu L_\nu(5 \text{ GHz})}{L_X(2 - 10 \text{ keV})}
\]

(Terashima & Wilson 2003)

<table>
<thead>
<tr>
<th>The central source in Henize 2-10:</th>
<th>X-ray binaries: too weak in the radio</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log R_X \sim -3.6$</td>
<td>$\log R_X < -5.3$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Typical low-luminosity AGN:</th>
<th>Supernova remnants: too weak in hard X-rays</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\log R_X \sim -2.8$ to -3.8</td>
<td>$\log R_X \sim -1.7$ to -2.7</td>
</tr>
</tbody>
</table>

(Ho 2008)
An actively accreting massive black hole
An actively accreting massive black hole

How massive?
An actively accreting massive black hole

How massive?

Merloni et al. 2003
An actively accreting massive black hole

How massive?

Merloni et al. 2003
An actively accreting massive black hole

How massive?

Merloni et al. 2003

The diagram shows a plot of log L_X (2-10 keV) vs. log L_R (5 GHz) for black holes. The plot distinguishes between supermassive black holes and stellar-mass black holes. Supermassive black holes are found in the upper right part of the plot, while stellar-mass black holes are generally located in the lower left part.
An actively accreting massive black hole

How massive?

Merloni et al. 2003

“fundamental plane of black hole activity”

\[\log L_R = 0.60 \log L_X + 0.78 \log M + 7.33 \]
An actively accreting massive black hole

How massive?

Merloni et al. 2003

log \(L_X \) (2-10 keV) \(\text{erg s}^{-1} \)

log \(L_R \) (5 GHz) \(\text{erg s}^{-1} \)

0.60 \(\log L_X \) + 0.78 \(\log M \)

“fundamental plane of black hole activity”

log \(L_R = 0.60 \log L_X + 0.78 \log M + 7.33 \)

black hole in Henize 2-10 \(\log (M_{BH}/M_{\text{sun}}) = 6.3 \pm 1.1 \)
Supermassive black holes have typically been found in massive galaxies with bulges.

\[M_{\text{BH}} \sim 1.4 \times 10^8 \, M_{\odot} \]
(Bender et al. 2005)

\[M_{\text{BH}} \sim 6.6 \times 10^9 \, M_{\odot} \]
(Gebhardt et al. 2011)
Supermassive black holes have typically been found in massive galaxies with bulges

But not always...

\[M_{BH} \sim 1.4 \times 10^8 M_{\text{sun}} \] (Bender et al. 2005)

\[M_{BH} \sim 6.6 \times 10^9 M_{\text{sun}} \] (Gebhardt et al. 2011)
The Low-Mass Regime: Putting Henize 2-10 in context
The Low-Mass Regime: Putting Henize 2-10 in context

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGC 4395</td>
<td>Sd</td>
</tr>
<tr>
<td>Pox 52</td>
<td>dE</td>
</tr>
</tbody>
</table>

Filippenko & Sargent (1989)
Filippenko & Ho (2003)
Peterson et al. (2005)

Kunth, Sargent & Bothun (1987)
Barth et al. (2004)
Thornton et al. (2008)
The Low-Mass Regime

<table>
<thead>
<tr>
<th>Name</th>
<th>Type</th>
</tr>
</thead>
<tbody>
<tr>
<td>NGC 4395</td>
<td>Sd</td>
</tr>
<tr>
<td>Pox 52</td>
<td>dE</td>
</tr>
<tr>
<td>Henize 2-10</td>
<td>Blue Compact Dwarf</td>
</tr>
</tbody>
</table>

Filippenko & Sargent (1989)
Filippenko & Ho (2003)
Peterson et al. (2005)

Kunth, Sargent & Bothun (1987)
Barth et al. (2004)
Thornton et al. (2008)
The Low-Mass Regime: Putting Henize 2-10 in context

Greene & Ho (2004, 2007)

174 broad-line AGN with $M_{BH} < 2 \times 10^6$ in SDSS DR4

Log black hole mass
The Low-Mass Regime: Putting Henize 2-10 in context

Greene & Ho (2004, 2007)

174 broad-line AGN with $M_{\text{BH}} < 2 \times 10^6$ in SDSS DR4

Log black hole mass

10
20
40
60
80
100

Number

≈ 93% extended disks (with pseudobulges)

≈ 7% spheroidals

Greene et al. (2008); Jiang et al. (2011)

Host Galaxies

- Low-luminosity galaxies, ~ 1 mag below L^*
- Well-defined optical nuclei
The Low-Mass Regime: Putting Henize 2-10 in context

Greene & Ho (2004, 2007)

174 broad-line AGN with $M_{BH} < 2 \times 10^6$ in SDSS DR4

- Type 2 counterparts to Greene & Ho sample
- 12 have stellar velocity dispersions $< 60 \text{ km s}^{-1}$ ($M_{BH} < 10^6$)

Greene & Ho (2004, 2007)

Barth et al. (2008)
Henize 2-10 is different

- Dwarf starburst galaxy with newly formed globular clusters
- Irregular morphology without a well-defined nucleus
Henize 2-10 is different

- Dwarf starburst galaxy with newly formed globular clusters
- Irregular morphology without a well-defined nucleus
- **Massive black hole but no discernible bulge or nuclear star cluster**
Henize 2-10 is different

- Dwarf starburst galaxy with newly formed globular clusters
- Irregular morphology without a well-defined nucleus
- Massive black hole but no discernible bulge or nuclear star cluster

Early stage of galaxy and black hole evolution?
Local analogue to high-redshift black hole and galaxy growth?
The First Star-Forming Galaxies

- blue, compact galaxies 600-800 Myr after the Big Bang (Bouwens et al. 2010)
- intrinsic sizes ≤ 1 kpc (Oesch et al. 2010)
- masses ~ 10^9-10^{10} M$_{\odot}$ (Labbé et al. 2010)
- likely forming globular clusters
- likely host massive black holes (Treister et al. 2011)
The First Star-Forming Galaxies

- blue, compact galaxies 600-800 Myr after the Big Bang (Bouwens et al. 2010)
- intrinsic sizes $\lesssim 1$ kpc (Oesch et al. 2010)
- masses $\sim 10^9-10^{10} \, M_{\odot}$ (Labbé et al. 2010)
- likely forming globular clusters
- likely host massive black holes (Treister et al. 2011)

Henize 2-10 is our best available local analog of high-redshift black hole and galaxy growth
Main take-away points about Henize 2-10

• First example of a massive black hole in a local star-forming dwarf galaxy

• Nearby galaxy much like those in the earlier universe

• Best available analog of primordial black hole growth - opens up a new class of host galaxies to search for more

• No discernible bulge - black hole growth can precede the build-up of galaxy spheroids
Follow-up observations of Henize 2-10
Follow-up observations of Henize 2-10

Accepted Proposals

- **HST/STIS** - Kinematics and ionization conditions near AGN
 P.I. Reines (w/ Whittle, Johnson)

- **XMM-Newton** - X-ray follow-up
 P.I. Hickox (w/ Greene, Reines, Sivakoff, Johnson, Alexander)

- **VLBI with the Long Baseline Array** - High-resolution observations at 1.4 GHz
 P.I. Reines (w/ Deller, Johnson)
New (yesterday!) VLBI data

SNR in brightest super star cluster

1" (~44 pc)

AGN

Adam Deller
New (yesterday!) VLBI data

SNR in brightest super star cluster

AGN

HST + VLA

Map center: RA: 08 36 15.117, Dec: -26 24 34.070 (2000.0)
Map peak: 0.000616 Jy/beam
Contours %: 20 40 80
Beam FWHM: 131 x 38 (mas) at 83.1°

Adam Deller
Follow-up observations of Henize 2-10

Accepted Proposals

• **HST/STIS** - Kinematics and ionization conditions near AGN
 P.I. Reines (w/ Whittle, Johnson)

• **XMM-Newton** - X-ray follow-up
 P.I. Hickox (w/ Greene, Reines, Sivakoff, Johnson, Alexander)

• **VLBI with the Long Baseline Array** - High-resolution observations at 1.4 GHz
 P.I. Reines (w/ Deller, Johnson)

Submitted Proposals

• **EVLA** - Water maser observations
 P.I. Reines (w/ Darling, Brogan, Johnson)

• **ALMA** - Dense molecular gas
 P.I. Johnson (w/ Reines, Testi, Brogan, Vanzi, Wilner, Chen)
Searching for big black holes in little galaxies

Accepted Proposals

- Chandra + EVLA - mini survey of nearby star-forming dwarfs
 P.I. Reines (w/ Sivakoff, Condon)
Searching for big black holes in little galaxies

Accepted Proposals

• Chandra + EVLA - mini survey of nearby star-forming dwarfs
 P.I. Reines (w/ Sivakoff, Condon)

Starting to plan large-scale radio survey (w/ Jim Condon)
Discussion topics

1. Using the black hole fundamental plane to obtain masses

This is potentially a very powerful tool for obtaining black hole masses. How reliable is it (at low masses)? Would simultaneous X-ray and radio observations significantly reduce the scatter in the relationship?

2. The impact of metallicity on making “heavy” black hole seeds

Are extremely low metallicities required to make a massive seed? Can massive seeds form from direct collapse of enriched gas in the modern universe (e.g. Begelman & Shlosman 2009)?