Overview	EM counterparts	Sources	Precursors	Prompt Emission	Trojan Analogs	Next Steps/Conclusion

Black Hole Coalescence: The Gravitational Wave Driven Phase

Jeremy Schnittman

NASA Goddard

UM Black Holes Augest 24, 2011

Black Hole Coalescence: The Gravitational Wave Driven Phase

Jeremy Schnittman

Overview ●○○○○○	EM counterparts	Sources	Precursors	Prompt Emission	Trojan Analogs 000	Next Steps/Conclusion
Mativ	ation					

Observing supermassive black hole mergers will teach us about

- Relativity
- High-energy Astrophysics
- Radiation Hydrodynamics
- Cosmology
- Galaxy Formation and Evolution
- Stellar Evolution
- Dark Matter

Overview ○●○○○○	EM counterparts	Sources	Precursors	Prompt Emission	Trojan Analogs 000	Next Steps/Conclusion
Motiv	vation					

Observing supermassive black hole mergers will teach us about

- Relativity
- High-energy Astrophysics
- Radiation Hydrodynamics
- Cosmology
- Galaxy Formation and Evolution
- Stellar Evolution
- Dark Matter

< E

Overview ○○●○○○	EM counterparts	Sources	Precursors	Prompt Emission	Trojan Analogs 000	Next Steps/Conclusion
Time	scales					

"final parsec" problem (maybe) not such a big problem after all

- triaxial galaxies e.g., Merritt & Poon 04, Preto+ 11
- massive perturbers Perets & Alexander 08
- high eccentricities Quinlan 96, Preto+ 11
- circumbinary gas disk Callegari, Cuadra, Dotti, Van Wassenhove, ...

Overview ○○○●○○	EM counterparts	Sources	Precursors	Prompt Emission	Trojan Analogs 000	Next Steps/Conclusion
Time	scales co	n't				

Black Hole Coalescence: The Gravitational Wave Driven Phase

Jeremy Schnittman

Jeremy Schnittman

3

A ■

Black Hole Coalescence: The Gravitational Wave Driven Phase

· 글 ▶ · 글 · · · ○ Q (Jeremy Schnittman

EM counterparts – What do we know?

- galaxy mergers + ubiquitous SMBHs
- remarkably few AGN pairs, no triples
- phases of BH binary evolution
 - stellar dynamical friction
 - gas dynamical friction
 - GW loss
- post-Newtonian + numerical relativity
- kick formula for known masses, spins

< E

EM counterparts – What do we need to know?

- galaxy merger rates (dependence on masses, mass ratio, gas fraction, etc.)
- BH parameters
 - BH masses
 - BH spins: amplitude and orientation
- BH environment prior to merger
 - quantity and quality of gas
 - stellar distribution and age/metallicity
 - properties of circumbinary disk

Overview	EM counterparts ○○●	Sources	Precursors	Prompt Emission	Trojan Analogs 000	Next Steps/Conclusion
What	we will le	arn				

- galaxy environs: gas vs stars
- high-velocity end of kick distribution
- time delay between galaxy, BH merger
- w/ PTA: merger rates for $M\gtrsim 10^8 M_{\odot}$, $z\lesssim 1$
- w/ LISA: rates, masses, spins for $M \lesssim 10^{6-7} M_{\odot}$, $z \lesssim \infty$
- L_D vs z out to $z\sim 1$
- w/ LIGO: rates, masses, spins for $M \lesssim 10^2 M_{\odot}$, $z \lesssim 0.3$

Diversity of Sources (theorist)

Diversity of Sources (observer)

Overview	EM counterparts	Sources	Precursors ●○○	Prompt Emission	Trojan Analogs 000	Next Steps/Conclusion

Pulsar timing arrays

Jeremy Schnittman

Overview 000000	EM counterparts	Sources	Precursors ○●○	Prompt Emission	Trojan Analogs 000	Next Steps/Conclusion

PTA sources

Black Hole Coalescence: The Gravitational Wave Driven Phase

Jeremy Schnittman

э

Overview	EM counterparts	Sources	Precursors ○○●	Prompt Emission	Trojan Analogs 000	Next Steps/Conclusion

Future wide-field surveys

- LOFAR \rightarrow SKA
- $PanSTARRS \rightarrow LSST$
- $\bullet \ \mathsf{eROSITA} \to \mathsf{WFXT}/\mathsf{LOBSTER}$
- UKIDSS \rightarrow ?

all need massive efforts at automated, real-time data analysis and coordination

글 🕨 🖌 글

verview	EM counterparts	Sources	Precurso

Prompt Emission ●○○○○○○○○ Trojan Analogs

Next Steps/Conclusion

GW counterparts

Even small amount of gas leads to bright EM signal

Precursors

energy content of gas dominated by gravitational potential:

$$E_{
m gas} \sim \epsilon \Sigma R^2$$
 ($\epsilon pprox 0.01 - 0.1$)

Prompt Emission

00000000

Trojan Analogs

cooling time for optically thick gas:

Sources

$$t_{
m cool} = rac{ au h}{c} \sim \epsilon^{1/2} \Sigma R^{3/2},$$

giving "universal" luminosity:

Overview

EM counterparts

$$rac{dL}{d\ln R}pprox \epsilon^{1/2}R^{1/2}L_{
m Edd}\sim 10^{44}~M_{
m 6}\,
m erg/s$$

Kro	lik ((20)	10°	١
				,

< E

Next Steps/Conclusion

Test particle simulations \Rightarrow ultra-relativistic flows

Black Hole Coalescence: The Gravitational Wave Driven Phase

Jeremy Schnittman

< Ξ

 Overview
 EM counterparts
 Sources
 Precursors
 Prompt Emission
 Trojan Analogs
 Next Steps/Conclusion

 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Hydro plus NR \Rightarrow strong shocks, heating

NASA

Bode et al.(2010)

Black Hole Coalescence: The Gravitational Wave Driven Phase

Jeremy Schnittman

 Overview
 EM counterparts
 Sources
 Precursors
 Prompt Emission
 Trojan Analogs
 Next Steps/Conclusion

 000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000

Hydro plus NR \Rightarrow strong shocks, heating

Bode et al.(2010)

Black Hole Coalescence: The Gravitational Wave Driven Phase

Jeremy Schnittman

3

Overview	EM counterparts	Sources	Precursors	Prompt Emission	Trojan Analogs	Next Steps/Conclusion
				000000000		

but just one question...

Black Hole Coalescence: The Gravitational Wave Driven Phase

Jeremy Schnittman

500

circumbinary disk clears out a gap around the BHs:

MacFadyen & Milosavljevic (2008)

after disk decouples ($t_{
m GW} < t_{
m inflow}$), could be even less gas

Jeremy Schnittman

-

Overview El

EM counterparts

Sources

OOO

Prompt Emission

Trojan Analogs

Next Steps/Conclusion

Need grid-based 3D MHD simulations

NASA

Overview	EM counterparts	Sources	Precursors	Prompt Emission	Trojan Analogs	Next Steps/Conclusion
				00000000		

Clear periodic accretion

Classical Lagrange points in restricted 3-body problem

$$\mu_2 = m_2/M = 0.2$$

$$\mu_2 = m_2/M = 0.02$$

Black Hole Coalescence: The Gravitational Wave Driven Phase

Jeremy Schnittman

Overview	EM counterparts	Sources	Precursors	Prompt Emission	Trojan Analogs ○●○	Next Steps/Conclusion
Appli	cations					

- formation mechanisms:
 - tidal capture of GC+IMBH
 - supermassive star formation in accretion disk
 - gas leaking from circumbinary disk
 - IMBH+MS star
- observables:
 - tidal disruption events
 - hyper-velocity stars
 - enhanced star formation
 - highly-shifted emission lines
 - accretion burst prior to merger
 - effect on gravitational waveforms

< E

Tidal disruption of stars during inspiral

Black Hole Coalescence: The Gravitational Wave Driven Phase

Jeremy Schnittman

-

Overview	EM counterparts	Sources	Precursors	Prompt Emission	Trojan Analogs 000	Next Steps/Conclusion ●○○○

What do we do next—theory

- cosmological N-body plus hydro
- high-resolution N-body simulations of galactic nuclei
- Newtonian regime: grid-based code vs. geodesics/SPH
- good initial conditions for circumbinary disk
- full NR+MHD
- radiation post-processing

Overview	EM counterparts	Sources	Precursors	Prompt Emission	Trojan Analogs	Next Steps/Conclusion
						0000

What do we do next—observations

- dual AGN: HST imaging, field integral spectroscopy
- binary AGN: SDSS + long-term spectroscopic followups
- ullet pulsar timing: more pulsars, ~ 10 ns resolution
- afterglows: wide-field multi-band surveys
- cores/star clusters: HST imaging + hires spectra
- LISA counterparts/precursors: wide-field time domain surveys (Pan-STARRS, LSST, MAXI, WFXT, etc.)

Overview	EM counterparts	Sources	Precursors	Prompt Emission	Trojan Analogs 000	Next Steps/Conclusion ○○●○

Summary/Conclusions

EM signatures of BH mergers are valuable as:

- Probes of strong-field GR (mass loss, kicks)
- Probes of accretion disk properties
- Cosmological observations
 - $M_{
 m BH}$, $M_{
 m bulge}$, $\sigma_{
 m bulge}$ relationships
 - galaxy formation and evolution
 - SMBH growth (mergers vs. accretion)
 - mass/spin distribution functions
- PTA counterparts
 - nearby, massive, bright
 - extensive follow-up on human timescales
- LISA counterparts
 - distance ladder in a single step
 - $\bullet\,$ luminosity-redshift to $\lesssim 1\%$
- LIGO counterparts: GW confirmation

Jeremy Schnittman

Overview 000000	EM counterparts	Sources	Precursors	Prompt Emission	Trojan Analogs 000	Next Steps/Conclusion ○○○●

Discussion Questions

is there gas? can we see it?

Black Hole Coalescence: The Gravitational Wave Driven Phase

Jeremy Schnittman

< E