Formation Mechanisms and Seed Black Holes

Jillian Bellovary University of Michigan

Galaxies and Black Holes

Are interconnected.

But what about...

- Dwarf galaxies
- Bulgeless galaxies

3.5 arcsec 150 pc (500 light years)

Henize 2-10 $M_{BH} \sim 10^6 M_{\odot}$

Reines+ 11, Barth+ 04

But what about...

- Dwarf galaxies
- Bulgeless galaxies

NGC 4395 $M_{BH} \sim 10^5 M_{\odot}$

Filippenko & Ho 2003

But what about...

- Dwarf galaxies
- Bulgeless galaxies

M33 M_{BH} < 1500 M_☉

Gebhardt+ 01

Which galaxies host BHs?

- Massive galaxies (M > $10^{10} M_{\odot}$) Ferrarese+ 06, Wehner+06
- At least some low mass galaxies $(M \sim 10^{10} M_{\odot})$

Why?

How do galaxies get central BHs?

- How do they form?
- What are their histories?
- What is the occupation fraction of BHs in galaxies?

How do seed BHs form?

- Population III star remnants
 - Seed mass = 100 1000 M_{\odot}
 - Formation redshift z ~ 30

e.g. Madau & Rees 2001

- Direct collapse of gas
 - Seed mass = $10^4 10^6 M_{\odot}$
 - Formation redshift z ~ 15

e.g. Begelman+ 06, Lodato+ 06

- Runaway collapse of nuclear clusters
 - Seed mass = $10^3 10^5 M_{\odot}$
 - Formation redshift z ~ 10

e.g. Devecchi+ 09, Davies Miller & Bellovary 11

GASOLINE

- SPH N-body code (Wadsley et al. 2004)
 - Star formation, supernova feedback, metal diffusion, metal line cooling
- New additions:
 - Seed BH formation
 - BH mergers
 - BH accretion
 - BH feedback

Seed BH Prescription

- Forming Seed BHs
 - Form seed black holes out of cold, dense, zero-metallicity gas
 - Probability of forming star or black hole
 - Seed mass same as gas particle $(10^4 10^6 M_{\odot})$

Purely local prescription

hz1 at z = 5: $M = 6 \times 10^{11} M_{\odot}$ at z = 0: Massive elliptical

h258 at z = 5: $M = 3 \times 10^{10} M_{\odot}$ at z = 0: Milky Way mass

h603 At z = 5: $M = 8 \times 10^9 M_{\odot}$ at z = 0: Low-mass disk galaxy

• Three galaxies to z=5

• Four values of BH formation efficiency (0.05, 0.1, 0.3, 0.5) hz1

h258

h603

BH Seeds Form in Massive Halos

z = 5

BH seeds form early

h258 eff = 0.1 z = 5

Bellovary+ 11

BH seeds form early

Eff = 0.1

Bellovary+ 11

Halo Mass at time of BH formation

BH Halo Occupation Fraction

z = 5

Bellovary+ 11

BH Halo Occupation Fraction

Low-Mass M- σ Relation

Massive seeds Pop III seeds

Van Wassenhove+ 10, Volonteri+ 08, Gultekin+ 09

Summary

- Seed BHs form in halos with mass between 10⁷ - 10⁹ M_☉
- Galaxies with mass > $10^{10}~\text{M}_{\odot}$ always host a BH at z = 5
- Galaxies with mass ~ 10⁹ M_☉ may be ideal testbeds for the true BH seed formation efficiency
- Bulgeless and dwarf galaxies may host supermassive black holes

Unsolved Questions

- How do the seeds of SMBHs form?
- Which galaxies host SMBHs and why?
- Are there observational clues that can help determine how SMBH seeds form?