Massive black hole binary mergers within sub-pc scale gas discs

Jorge Cuadra PUC Chile

Phil Armitage Richard Alexander Mitch Begelman University of Colorado

Massimo Dotti Monica Colpi Milano-Bicocca Constanze Rödig Alberto Sesana Pau Amaro-Seoane AEI, Golm

Dynamical friction is fast for large separations... but it becomes inefficient when stellar mass ~ BH mass Then slowly kick out individual stars... until it reaches the relativistic regime, where $t \sim a^4$ However, there's no time to get there. "Last-parsec problem"

Gas-driven mergers at large scales

e.g., Escala et al 2004, 2005; Mayer et al 2008; Dotti et al 2009 MDotti, SvWassenhove & JGuedes' talks

- When galaxies merge, large amounts of gas are funnelled to the centre
- This gas can absorb the binary angular momentum faster than stars
- Efficiently bring the black holes to parsec distances
- Binary gets circular and coplanar with gas

Dotti et al 2009

Mayer et al 20

Binary + Disc Numerical Models

Cuadra, Armitage, Alexader, Begelman 2009

- 3:1 mass ratio binary
- $M_{\rm disc} = 0.2 M_{\rm BH}$
- Physical angular momentum transport due to self-gravity
- Modified Gadget-2 (SPH code by Springel 2005)

Binary Orbit Evolution

 $\frac{da}{dt} \approx 10^{-4} a_0 \Omega_0$

Scaling to real systems

- Simulations done for given mass ratios and chosen cooling time... need to generalise
- Analytical predictions show da/dt dependence on disc mass and viscosity law (Syer & Clarke '95; Ivanov et al '99)
- Our simulations agree well...
- We can then scale results to different disc properties using analytical models.

Maximum disc mass

- Can't we just have a very large disc to make sure there's a merger?
- No! There's a maximum mass beyond which cooling will be too fast and produce fragmentation instead of transport angular momentum.

Maximum decay rate

• We combine analytical estimates of max Σ (Levin '07) and da/dt to calculate the maximum decay rate a disc can produce.

mass

Binaries smaller than $10^7 M_{sun}$ could merge. Binaries will spend most time at few 0.01 pc separations (hard to observe)

What about larger binaries?

- Efficient stellar dynamics (tri-axiality or rotation, cf Miguel's talk).
- 3-body interactions with new black holes.
- They just don't merge.
- More massive discs... star formation could refill the "loss cone".

Star-forming discs

Work in progress with Pau Amaro-Seoane

- More massive discs will cool faster, then fragment and form stars.
- Stellar scattering continues driving the merger process.
 - Also get stellar disruptions?
- Complex process: star formation and dynamics will influence evolution.

Eccentricity Evolution

Separation

Eccentricity reaches ~0.35 by the end of the simulation. No sign of saturation. Will it grow to e ~ 1 ?

Trying different initial eccentricities... Rödig, Dotti, Sesana, Cuadra, Colpi 2011 Eccentricity seems to converge to $e \sim 0.6$!

Eccentricity evolution

- Secondary produces instantaneous overdensity in inner part of disc.
- If eccentricity is low, overdensity decelerates secondary at apocentre, increasing eccentricity.

Eccentricity evolution

- If eccentricity is high, overdensity accelerates secondary at apocentre, decreasing eccentricity.
- Equilibrium where angular velocities are equal, at e ~ 0.6.

Accretion

- Keep track of gas "accreted" by each BH (R < 0.1a)
- More accretion on to the secondary
- Variability roughly on orbital time-scale.

"Observable" consequences

- Higher eccentricity enhances accretion rate variability.
- GW observations would detect remnant e ~ 10⁻² - 10⁻³.

Conclusions

- Gas discs are able to produce coalescence of M < 10⁷ M_{sun} binaries.
- Expect many binaries at few 0.01 pc separations.
- Binaries become eccentric -- influence the accretion rate and the gravitational wave signal at coalescence.
- For more massive binaries star-forming discs may help.

Open Questions

- Is the "last-parsec problem" really solved?
- When is the binary + circumbinary disc model appropriate? (cf L del Valle poster)
- Can we use circumbinary simulations to identify signatures of sub-pc binaries?
- How important is treating properly the disc thermodynamics?
- How much gas follows the disc to produce an electromagnetic counterpart?