Some Uncomfortable Questions about Single and Double Black Holes

Julian Krolik
Johns Hopkins University
How Reliable Are Single Black Hole Masses?

- We understand the dynamics of stellar kinematics, masers; is that true of BLR motions in AGN?

 Both g and $g_{\text{rad}} \sim r^{-2}$

 $<\kappa_{\text{ion}}> >> \kappa_T$ so even if $L << L_E$ can have $g_{\text{rad}} > g$

 Magnetized winds? Other forces?

- Cross-correlation lags are not maps, and statistical correlations of L_B with lags are even worse

- What about flattening/inclination angle?

 $M \sim (\sin i)^{-2}$
How Well Can We Measure Spin?

- **Thermal continuum fitting**
 Separating thermal spectrum from Comptonized? L, T give R, but need M, and what is R(R_{ISCO})?
 T_{\text{color}} vs. T_{\text{eff}} (depends on details of atmosphere)

- **K\alpha profile fitting**
 Why should emissivity be a cut-off power-law? Why should the cut-off fall exactly at the ISCO?
Does Spin Really Control Jet Strength?

• What about stellar mass black holes, whose jets change drastically on very short timescales?
• \(L_{BZ} \sim c(B_{pol}^2/8\pi) r_g^2 f(a/M) \)
 Magnetic field as important as spin; what controls its intensity? (Simulations show it’s not the poloidal field in the disk)
 Topology of field in disk? Large-scale flux?
If Mergers Trigger AGN, Which Ones?

• What mass ratio is required?

Could a burst of gas accretion be as effective as a true merger? What about quasi-steady accretion rather than individual events?

• What if mergers work, but only on galaxies with pre-existing conditions? Does this qualify as “merger-driven”?

• Do mergers preferentially lead to specific AGN types?

• If mergers are responsible for only a minority of AGN, why the community obsession?
Does Gadget = Truth?

Used for: black hole growth, galaxy merger dynamics, galaxy assembly,.....

• Parameterized prescriptions for: star-formation, stellar heating, interstellar cooling, black hole accretion, AGN heating,....

• Resolution: $r_{\text{influence}} \sim 4 \, M_7 \, v_{100}^{-2} \, \text{pc}$, $r_{\text{ISM}} \sim 1 - 30 \, \text{pc}$

• Test: Can it predict accretion rates in nearby galaxies?
Can Circumbinary Disks Solve the “Final Parsec” Problem?

Hoped-for solution: binary torques on outer gas remove angular momentum

Pro: Seems natural
Con: Need interaction with $M_{\text{disk}} \sim M_{\text{binary}}$; can enough be gathered? Will self-gravity transform the disk into stars?

Pro: Genuine MHD calculation (Shi, K., Lubow & Hawley in prep.) shows $\sim 15x$ torque/M_{disk} than α-hydro
Con: MHD also shows $\sim 40x$ accretion/M_{disk} than α-hydro, enough to nearly cancel binary shrinkage (details matter)

Pro(?): If there is substantial accretion, an AGN will illuminate the disk, perhaps driving off a wind (reducing accretion), but also perhaps accelerating inflow
Circumbinary Disks: Standard Theory

Binary exerts torque through disk resonances
 Break in axisymmetry required for net torque
When \(q \sim 1 \), torque stops accretion at \(r \sim 2a \)
Internal stresses described by \(\alpha \)-model or self-gravity
Problems with Standard Theory

α-model dubious

Assumes steady-state inflow, not pile-up in inner disk

Applies deep within disk, but greatest torque occurs inside the edge; leakage takes place across boundaries, outside of disk

Fundamentally unphysical

Are disks smooth?

Parsec-scale gas in AGN likely clumpy; affects stresses?

Ordinary disk theory assumes vertical support, pressure due to local mechanisms

If one or both black holes accrete, irradiation important

Are disks aligned with the binary orbit?

What if they are oblique or retrograde?
2-d hydro: $\alpha=0.01$; $q=1$, $e=0$

$T_{\text{tot}} \sim 0.0014GM\alpha \frac{aS_{\text{max}}}{\Sigma_0}$

$M_{\text{in}} \sim 0.2M_{\text{out}}$

Azimuthally-Averaged Radial Structure from a Classical Disk Evolution Calculation

(MacFadyen & Milosavljevic 2008)
Azimuthally-Averaged Radial Structure from 3-d MHD
(Jiming Shi, K., Lubow & Hawley 2011)
Total torque exquisitely sensitive to edge profile
Results

Because $\Sigma_{3:2}/\Sigma_{\text{max}} \sim 20x$ greater than MM08, T\text{tot} = 0.02G\text{max} \gg 14 £ T\text{tot}:\text{MM}$

$M_{\text{in}} \gg O(0:1)M_{\text{out}}$

$M_{\text{in}} = 40 £ M\text{MM08}$

But

$M_{\text{in}} \approx 40 £ M\text{MM08}$
Effect on Binary Orbit

Binary separation depends on J, but also the total mass and the mass ratio:

\[
\frac{a}{a} = 2J + \frac{M_{\text{tot}}}{M_{\text{tot}}} M_1 + \frac{M_{\text{tot}}}{M_{\text{tot}}} M_2
\]

For equal masses:

\[
\frac{a}{a} = 2J + \frac{3M_{\text{tot}}}{M_{\text{tot}}}
\]

\[
\frac{a}{a} = i \frac{2T}{J} + 2 \frac{M_{\text{tot}}}{M_{\text{tot}}}
\]

The ratio of accretion rate to torque matters; increased by MHD.

We find

\[
\text{net } \frac{a}{a} = 1:2J
\]

About 70% faster than MM08 for equal M_d.
Surprise: Strongly Asymmetric, Eccentric
Bottom Line: MHD Effects in Circumbinary Disks

- Internal stresses are stronger in disk body, even more so in the gap
- That leads to more matter in the gap, therefore greater torque
- And also leads to more matter accreted
- Near cancellation in binary shrinkage rate means details matter!
What if LISA (or something similar) Doesn’t Fly Until 2040+? Can We Find Reliable EM Signatures of Black Hole Mergers?

How to recognize a binary black hole system?

• When should one or both black holes be an AGN?
• BLRs merge for all separations when $q \sim 1$, larger separations for all q; what distinguishes such a binary? Separated BLRs appear only for small separations, small q; implies large M_1
• Does every genuine binary merge?
Relativistic signals depend crucially on gas mass; how well can we predict $\Sigma(r)$?

- To what extent do binary torques retard inflow?
- How well can matter follow a rapidly compressing binary? (α-model does not apply)
- Energy deposited \sim gas mass by the Equivalence Principle
- Large energy deposition \rightarrow large gass mass \rightarrow optically thick \rightarrow spectral reprocessing, variability suppression
Recap of Questions

- Can we trust AGN black hole masses?
- How can we measure AGN spin?
- Which parameters control jet strength?
- What part of nuclear activity is merger-driven?
- How reliable are galaxy evolution simulations?
- How do external disks interact with black hole binaries?
- Can we predict EM features associated with black hole binaries, mergers, and merger remnants well enough to search for them efficiently?