An Observational View of the Relative Growth of BHs and Galaxies

Kevin Schawinski Einstein Fellow Yale Center for Astronomy & Astrophysics Department of Physics Yale University

At what stage in their lives do galaxies feed their black holes?

What effect does black hole growth have on the evolutionary trajectory of galaxies?

4 Msec CDF-S

Tuesday, August 23, 2011

Which galaxies are feeding their black holes at z~0?

Which galaxies are feeding their black holes at z~0?

Tuesday, August 23, 2011

Input: GALEX+SDSS+2MASS photometry, SDSS spectroscopy (Lick indices) Result: **1-10% of stellar mass** formed in most recent burst; leads to **rapid quenching** on ~100 Myr timescale and **migration to red sequence**

Input: GALEX+SDSS+2MASS photometry, SDSS spectroscopy (Lick indices) Result: **1-10% of stellar mass** formed in most recent burst; leads to **rapid quenching** on ~100 Myr timescale and **migration to red sequence**

Input: GALEX+SDSS+2MASS photometry, SDSS spectroscopy (Lick indices) Result: **1-10% of stellar mass** formed in most recent burst; leads to **rapid quenching** on ~100 Myr timescale and **migration to red sequence**

Input: GALEX+SDSS+2MASS photometry, SDSS spectroscopy (Lick indices) Result: **1-10% of stellar mass** formed in most recent burst; leads to **rapid quenching** on ~100 Myr timescale and **migration to red sequence**

Input: GALEX+SDSS+2MASS photometry, SDSS spectroscopy (Lick indices) Result: **1-10% of stellar mass** formed in most recent burst; leads to **rapid quenching** on ~100 Myr timescale and **migration to red sequence**

Input: GALEX+SDSS+2MASS photometry, SDSS spectroscopy (Lick indices) Result: **1-10% of stellar mass** formed in most recent burst; leads to **rapid quenching** on ~100 Myr timescale and **migration to red sequence**

Deviations from the Schmidt Law: Clues to Feedback

SFR = $\epsilon M_{gas}/t_{dyn}$

Evolution of an (early-type) galaxy following the Schmidt Law with typical dynamical time and gas fraction and a standard efficiency of 2%. No further outside gas accretion, no minor mergers and no mass loss allowed to replenish the gas reservoir.

Schawinski+09a, Kaviraj, Schawinski, Silk & Shabala 2010

Deviations from the Schmidt Law: Clues to Feedback Molecular gas mass M_H, CO(1–0) [M_©] (a) 10⁹ 10⁸ 0.01 0.10 1.00 10.00 Age of young burst t, [Gyr] Starforming Seyfert AGN AGN+SF

Schawinski+09a, Kaviraj, Schawinski, Silk & Shabala 2010

Schawinski+09a, Kaviraj, Schawinski, Silk & Shabala 2010

Two modes of black hole growth:

Post-starburst early-types

Early-type galaxies (11% of AGN)

Least massive black holes most likely to accrete.

Triggered (indirectly) by (major?) merger.

Host galaxies have post-starburst stellar populations (blue>green>red).

Are building low-mass end of the red sequence.

Phasing with merger/starburst still hard to understand.

Two modes of black hole growth:

Post-starburst early-types

vs. secular late-types

Early-type galaxies (11% of AGN)

- Least massive black holes most likely to accrete.
- Triggered (indirectly) by (major?) merger.
- Host galaxies have post-starburst stellar populations (blue>green>red).
- Are building low-mass end of the red sequence.
 - Phasing with merger/starburst still hard to understand.

Late-type galaxies (43% of AGN +46% indeterminates?)

- Most massive black holes most likely to accrete.
- Unlikely to be triggered by merger disks are stable.
- Host galaxies do NOT post-starburst stellar populations, but low SSFR?
- Are not transitioning from blue to red.
- Fuelling likely to be stochastic.
- Milky Way is archetype.

WFC3/IR (YJH) imaging of Chandra X-ray AGN

Hasinger, Miyaji & Schmidt (2005)

Tuesday, August 23, 2011

WFC3/IR (YJH) imaging of Chandra X-ray AGN

Hasinger, Miyaji & Schmidt (2005)

80% have low Sersic indices - disk-dominated, not bulges, not mergers.

Possibly high Eddington ratios!

Very similar morphological mix as at z~0 - but *caveat emptor*!

Similar to Cisternas+11 at z<1 Now also Allevato+11(clustering), Mullaney+11, Kocevski, CANDELS+11 (submitted)

Mullaney+11 - SSFR of X-ray selected AGN indistinguishable from galaxies

No link to mergers? Not so fast... Mid-IR-selected CT-quasars at z>2 are a mess

Fig. 3. Rest-frame optical images of six mid-IR—selected heavily obscured quasars at $z \sim 2$ in the Extended Chandra Deep Field-South region. Top images were obtained with the HST-WFC3 (Wide Field Camera 3) camera using the *Y*, *J*, and *H* observations of the Ultra-Deep (left) and GOODS fields. The bottom images were made by combining data in the *R*, *J*, and *K* bands obtained from ground-based telescopes, hence with a spatial resolution about 10 times as large as that of the HST images. All images are 15 arc sec by 15 arc sec.

Treister, Schawinski+10, Science

No link to mergers? Not so fast... Mid-IR-selected CT-quasars at z>2 are a mess

Fig. 3. Rest-frame optical images of six mid-IR—selected heavily obscured quasars at $z \sim 2$ in the Extended Chandra Deep Field-South region. Top images were obtained with the HST-WFC3 (Wide Field Camera 3) camera using the *Y*, *J*, and *H* observations of the Ultra-Deep (left) and GOODS fields. The bottom images were made by combining data in the *R*, *J*, and *K* bands obtained from ground-based telescopes, hence with a spatial resolution about 10 times as large as that of the HST images. All images are 15 arc sec by 15 arc sec.

z>2 AGN hosts still very poorly understood and high-z universe just opening up:

- * *HST*/IR (imaging & grism)
- * ALMA
- * Chandra deep fields
- * Near-IR MOSs

Do we even capture all black hole growth? High obscuration a major problem and mid-IR selection still difficult and low-L systems still basically impossible to detect...

Search for z>6 AGN

z=6,7,8 drop-outs seen by HST, Bouwens+06,10a,10b

Effective 23 years of Chandra time!

Hard band		Soft band
Signific	ance: 6.8o	5σ
Observ	ed: 2-10 keV	0.5-2 keV
Rest:	14-56 keV	3.5-14 keV

30%+ of z=6 galaxies host a growing black hole

Hard band		Soft band
Significance: 6.80		5σ
Observe	ed: 2-10 keV	0.5-2 keV
Rest:	3.5-14 keV	14-56 keV

197 z=6 dropout galaxies Average Luminosity: $L_{X,hard} = 8.4 \times 10^{42} \text{ erg s}^{-1}$ $L_{X,soft} = 9.1 \times 10^{41} \text{ erg s}^{-1}$

Hard band		Soft band
Signific	ance: 6.8ơ	5σ
Observ	ed: 2-10 keV	0.5-2 keV
Rest:	3.5-14 keV	14-56 keV

197 z=6 dropout galaxies Average Luminosity: $L_{X,hard} = 8.4 \times 10^{42} \text{ erg s}^{-1}$ $L_{X,soft} = 9.1 \times 10^{41} \text{ erg s}^{-1}$

Factor ~9 difference implies large absorbing column: $N_H > 1.6 \times 10^{24}$ cm⁻²

Hard band		Soft band
Significar	5σ	
Observed	l: 2-10 keV	0.5-2 keV
Rest:	3.5-14 keV	14-56 keV

197 z=6 dropout galaxies Average Luminosity: $L_{X,hard} = 8.4 \times 10^{42} \text{ erg s}^{-1}$ $L_{X,soft} = 9.1 \times 10^{41} \text{ erg s}^{-1}$

Factor ~9 difference implies large absorbing column: $N_H > 1.6 \times 10^{24} \text{ cm}^{-2}$

Very few if any sources can have lower obscuring colums, so (almost) all AGN at z=6 are Compton-thick at all viewing angles.

Black Hole Growth at z=6-8 is Self-Regulated

models by Marta Volonteri and Priya Natarajan

Redshift

Black Hole Growth at z=6-8 is Self-Regulated

models by Marta Volonteri and Priya Natarajan

Redshift

Models <u>without</u> self-regulation result in growth histories incompatible with the 6<z<8 observations.

Direct collapse, no self-regulation Pop III, no self-regulation

Black Hole Growth at z=6-8 is Self-Regulated

models by Marta Volonteri and Priya Natarajan

Redshift

Models <u>without</u> self-regulation result in growth histories incompatible with the 6<z<8 observations.

Direct collapse, no self-regulation Pop III, no self-regulation

Models <u>with</u> self-regulation match the 6<z<8 observations.

Direct collapse, self-regulation Pop III, self-regulation

Self-regulation = explicit link between accreted black hole mass and halo circular velocity

Summary

1. There are two <u>fundamentally different</u> black hole growth modes in <u>early-</u> and <u>late-type</u> galaxies.

2. <u>Secular processes</u> in disk galaxies may govern a large fraction of cosmic black hole growth.

3. Black hole growth appears to be <u>self-regulated</u> even at z=6-8.

Summary

1. There are two <u>fundamentally different</u> black hole growth modes in <u>early</u>- and <u>late-type</u> galaxies.

2. <u>Secular processes</u> in disk galaxies may govern a large fraction of cosmic black hole growth.

3. Black hole growth appears to be <u>self-regulated</u> even at z=6-8.

Summary

1. There are two <u>fundamentally different</u> black hole growth modes in <u>early</u>- and <u>late-type</u> galaxies.

2. <u>Secular processes</u> in disk galaxies may govern a large fraction of cosmic black hole growth.

3. Black hole growth appears to be <u>self-regulated</u> even at z=6-8.

Questions:

* Are there really multiple modes of co-evolution, and if so, why do they give the same result (scaling relations)?

* If a large fraction of black hole mass is accreted in disk galaxies, why do we have an M-sigma relation, rather than an M-disk mass or M-total mass relation?

* The "green valley conundrum": If there is such a large time lag between starburst and black hole accretion, how can we have feedback?