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STELLAR DYNAMICS

• All galaxies contain stars

• Gravity is well well understood

• Stars are well suited to measure the mass distributions including the 
SMBH mass, but also stellar and dark matter component 

• As a result, most direct BH mass measurement come from stellar 
dynamics

The black hole in NGC 3379 569

Figure 9. From top to bottom: the SAURON symmetrized kinematic data, the best-fitting model with both the SAURON and OASIS data fitted, the model
that best fits only the SAURON data and the predictions for the SAURON field from the model that best fits only the OASIS data. The model that uses only the
SAURON data differs little from the model using the combined data set. The model that uses the OASIS data set suffers greatly from the lack of constraints
outside 5 arcsec and consequently generates an unphysical orbital structure. (Note that the high-velocity region at x ∼ 0 arcsec, y ∼ −20 arcsec in the data is a
foreground star and is masked during the modelling.)

the OASIS data are a powerful probe of the black hole mass. As
shown in two dimensions in Fig. 12 and along the major axis with
errors in Fig. 13, inspection alone is sufficient to locate the best-
fitting model when the combined SAURON and OASIS data sets
are used. This suggests that the best-fitting model from the combined
data sets also provides an accurate representation of the stellar orbit
structure in the central regions of the galaxy. To test this hypoth-
esis, this best-fitting model was used to predict the higher spatial
resolution STIS and FOS stellar kinematics, and these predictions
were completely consistent with those measurements. The ability
of the OASIS data to resolve the black hole sphere of influence
therefore provides sufficient constraints on the central stellar orbit

structure that the predicted stellar dynamics from this model can be
extrapolated to much smaller scales.

Neither the results from the SAURON-only model nor those of
the OASIS-only model are unexpected; similar results were seen by
Copin, Cretton & Emsellem (2004) in their models of NGC 3377
using SAURON and OASIS data for that galaxy. They found, as
here, that the wide-field SAURON data are critical in constraining
M/L; however, unlike this study, they also found that the SAURON
data alone were unable to provide useful limits on the SMBH mass
in NGC 3377. This difference is likely due to the combined effects
of a slightly lower S/N in their SAURON data and worse seeing
during those observations, which conspire to render the NGC 3377
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• Virial theorem

• Applies to intrinsic 3D properties, but generally we can only observe (part of) a 
projection.

• Thus dynamical models are needed to `de-project’ the galaxies

• All analytical solutions, including Jeans, require strong assumptions (on the anisotropy)

• Jeans models only constrain the second moment:

• Mass-anisotropy degeneracy 

• N-body models are not practical for SMBH masses, due to dynamic range

STELLAR DYNAMICS
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ORBIT-BASED MODELS
• Orbit-based models do not place any 

assumptions on the anisotropy (orbit 
configuration) and can use all kinematic 
information (higher moments)

• Still imposes some assumptions: 
equilibrium, geometry 

• Contain many parts/steps and numerical 
integrals, but are all well understood.

• Several implementations exist: Spherical 
(Magorrian), axisymmetric (NUKERS, van 
der Marel, Valluri), Triaxial (van den Bosch) 
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ORBIT-BASED MODELS

(1)Integrate orbit in the 
potential and store all the 
observables, including 
kinematics
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ORBIT-BASED MODELS

(1)Integrate orbit in the 
potential and store all the 
observables, including 
kinematics

(2)Generate a library of 
orbits

(3)Construct a superposition 
using least squares
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ORBIT-BASED MODELS

384 CRETTON ET AL. Vol. 124

Richstone and collaborators (see, e.g., Richstone & Tre-
maine 1984, 1985 ; Levison & Richstone 1985, 1987 ; Katz &
Richstone 1985). Pfenniger (1984) used SchwarzschildÏs
method to build two-dimensional models of barred galaxies
and Merritt & Fridman (1996) and Merritt (1996a) used it
to build a number of triaxial models with cusps. Zhao
(1996b) modeled the Galactic bar using similar techniques.
SchwarzschildÏs original experiment reproduced self-
consistently a triaxial mass distribution, but as shown by
Pfenniger (1984), one can easily include kinematic con-
straints in the models. Levison & Richstone (1985) modeled
the observed mean line-of-sight velocities V and velocity
dispersions p to estimate the amount of counter-rotation in
some well-observed galaxies.

Recent advances in detector technology have made it
possible to measure full line-of-sight velocity proÐle (VP)
shapes, instead of only the Ðrst two moments V and p (e.g.,
Franx & Illingworth 1988 ; Rix & White 1992 ; van der
Marel & Franx 1993, hereafter vdMF; Kuijken & Merri-
Ðeld 1993). This provides further constraints on the dynami-
cal structure of galaxies. Rix et al. (1997, hereafter R97) took
advantage of this development and extended Schwarzs-
childÏs scheme to model VP shapes. They applied it to
spherical models for the E0 galaxy NGC 2434 and showed
that the observations imply the presence of a dark halo.
Here we consider axisymmetric models and show how to

use the extended Schwarzschild method to construct fully
general three-integral models that can match any set of
kinematic constraints. Independent implementations of the
software were written by N. C. and R. v. d. M. A summary
of this development is given by de Zeeuw (1997). In an
earlier paper (van der Marel et al. 1998, hereafter vdM98;
see also van der Marel et al. 1997b) we applied this model-
ing technique to the compact E3 elliptical M32, for which
previous modeling had suggested the presence of a central
massive black hole (BH) (e.g., Q95 ; Dehnen 1995). Cretton
& van den Bosch (1999) describe an application to the
edge-on S0 galaxy NGC 4342. Other groups are in the
process of developing similar techniques to the one
described here (e.g., Richstone et al. 1997 ; see also : Emsel-
lem, Dejonghe, & Bacon 1999 ; Matthias & Gerhard 1999).

This paper is organized as follows. In ° 2 we describe step
by step how to construct the models (see Fig. 1). We Ðrst
discuss the mass models that we consider (° 2.1). We
describe how we choose a grid in integral space that yields a
representative library of orbits (° 2.2), how these orbits are
calculated numerically (° 2.3), how their properties are
stored on a number of grids (° 2.4), and how we model all
aspects of the data taking and analysis, such as seeing con-
volution, pixel binning, and extraction of VPs (° 2.5). We
then present the method that we employ to determine the
non-negative weight of each orbit (i.e., the number of stars

FIG. 1.ÈFlowchart of the extended Schwarzschild method. We Ðnd the non-negative superposition of the orbits with a least squares algorithm (NNLS).
This combination of orbits reproduces a set of photometric (surface brightness distribution) and kinematic constraints (VPs).Cretton et al. 1998

Loop over all possible 
mass distributions:

SMBH, viewing angles, 
stellar mass-to-light ratio 
and dark matter 

Marginalize over all to get 
to the SMBH mass 
measurement

Computationally 
challenging, but not 
impossible
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Triaxial orbit based models 653

Figure 2. The (x, z) plane of a triaxial galaxy with a separable potential, for
a value of the energy E that is large enough that all orbit families appear. The
figure shows the equipotential that corresponds to E, the focal hyperbola,
the curve at which I2 = 0, and the location of the thin orbits. The regions
where the different orbit families cross the (x, z) plane perpendicularly are
indicated: ‘B’ denotes box orbits, ‘S’ corresponds to short-axis tubes and
‘I’ and ‘O’ label inner and outer long-axis tubes. It can be seen that all
tube orbits cross the (x, z) plane perpendicularly in two points: once in the
region outside the thin orbit curve and once inside. This means that the (grey)
region between the thin orbit curves comprises all orbits just once, which is
important for the orbital sampling (Schwarzschild 1993).

which avoid the centre and are therefore sometimes referred to as
‘centrophobic’, and a set of orbits that can cross the centre, usually
referred to as boxes or ‘centrophilic’ orbits (e.g. Kuzmin 1973; de
Zeeuw 1985; Statler 1987). These different orbit families conserve
unique combinations of these integrals and can therefore be linked to
distinct volumes in phase space. May be even more remarkably, all
four orbit families in a separable potential cross the (x, z) plane per-
pendicularly in well-defined regions (Fig. 2; Schwarzschild 1993).
Similar to axisymmetry, all tubes except the so-called thin orbits (in
which the inner and outer radial turning points coincide) cross the
(x, z) plane perpendicularly twice. At a given energy, these points are
located in two distinct areas, separated by the line that connects the
points of the thin orbits. This line can be parametrized analytically
in a separable potential.

These properties are summarized in Fig. 2, where we have used
the isochrone separable potential of the triaxial Abel model. The
figure shows the (x, z) plane for a value of the energy that is large
enough that all orbit families are populated. The thick outermost
curve is the equipotential at this energy, the innermost and outermost
decreasing curves inside the equipotential connect the points where
the thin orbits cross the (x, z) plane perpendicularly, the intermediate
decreasing curve corresponds to I2 = 0, and the rising curve is the
focal hyperbola. The four areas corresponding to the different orbit
families are also indicated (see section 5.4 of vdV08 for further
details).

This orbital structure depends crucially on the presence of a cen-
tral core and is (partially) destroyed by the addition of a super-

massive black hole and/or a central cusp (Gerhard & Binney 1985).
Some orbits in these non-separable potentials do not conserve global
integrals of motion other than the energy E and may not all cross
the (x, z) plane perpendicularly. The three types of tube orbits, in-
cluding the thin tubes, are still supported (cf. Schwarzschild 1993).
Most box orbits are transformed into boxlets (Miralda-Escudé &
Schwarzschild 1989) and orbits that occupy certain parts of phase
space become chaotic. The amount of chaotic motion and the radial
range inside which it is present depends on the central cusp slope
(see Section 4.6).

4.3 Initial conditions

The orbits in our models are more complicated than those in a sep-
arable potential, as we use a more realistic MGE potential with a
supermassive black hole. Still, we use the properties of separable
models in our sampling of initial conditions. We sample the orbital
energy implicitly through a logarithmic grid in radius. When the
model has to reproduce observational data, it is important to sample
the orbital energy on a grid with a minimum radius that is at least an
order of magnitude smaller than the pixel size of the observations.
In the case of Hubble Space Telescope (HST) data, this typically
corresponds to ∼10−2 arcsec. The outer grid radius is determined
by our constraint that the grid must include !99.9 per cent of the
mass.

Each of the grid radii ri is linked to an energy by calculating
the potential at (x, y, z) = (ri , 0, 0). The orbital initial conditions
are then sampled from a dense grid in the (x, z) plane. Since most
orbits cross the (x, z) plane perpendicularly twice above z > 0 it is
not necessary to sample the whole plane. The double countings are
avoided by finding the location of the thin orbit curves iteratively:
we launch orbits at different radii [keeping θ = arctan(x/z) fixed]
until the width of the orbit is minimal. This is similar to what was
done in the axisymmetric three-integral models, where all orbits are
short-axis tubes.

The starting points (x, z) are selected from a linear open polar
grid (R, θ ) in between the thin orbit and the equipotential (the grey
area in Fig. 2). The initial velocity in the y direction is determined
from v2

y,0 = 2[V(x0, 0, z0) − Ei] and (vx , vz) = (0, 0). This three-
dimensional set (E, R, θ ) of starting conditions is commonly referred
to as the ‘(x, z) start space’ (Schwarzschild 1993). It is sufficient to
launch orbits in only one direction when the density (or another
quantity that is even in the velocity, such as the second moment)
has to be reproduced. When the velocity (and odd higher order
velocity moments of the DF) is fitted in the model, the direction
of the orbital motion is also important. This information could be
taken into account directly by launching orbits in both the positive
and negative y direction. However, the trajectories of the prograde
and retrograde orbits are identical, which means it is much more
efficient to include the counter-rotating orbits only at the fitting
stage by reversing the velocity sign appropriately. This is only valid
when figure rotation is ignored (cf. Schwarzschild 1982).

Since boxes are essential for the support of the triaxial shape
(Schwarzschild 1979; Hunter & de Zeeuw 1992), a library with
relatively few of them cannot be expected to reproduce a triaxial
mass model. The (x, z) start space has few box orbits, especially
at large radii (see Fig. 3). To make sure that the orbit library pro-
vides enough freedom in the outer parts of the model, we add ad-
ditional box orbits, like Schwarzschild (1993). Box orbits always
touch the equipotential (Schwarzschild 1979). We therefore sample
start points on (successive) equipotential curves, using linear steps
in the two spherical angles θ and φ. At each combination of (θ , φ)
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THE SIZE OF AN ORBIT LIBRARY

• How do you know the orbit 
library is complete?

• Three conserved quantities: 
Integrals motions (Energy, 
Angular momentum and I3)

• In (non-rotating) potentials 
all orbits pass orthogonally 
through the x-z plane

• Sampling orbits is thus trivial
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THE SIZE OF AN ORBIT LIBRARY

• How do you know the orbit library 
is complete?

• Three conserved quantities: Integrals 
motions (Energy, Angular 
momentum and I3)

• In (non-rotating) potentials all orbits 
pass orthogonally through the x-z 
plane

• Sampling orbits is thus trivial

• Sampling schemes differ, but it is easy 
to show convergence is reached.
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Figure 3. Representation of the (x, z) and the stationary start space and their symmetries for the triaxial Abel model from vdV08. The panels show the orbital
starting points for increasing energies (denoted at the top), from an inner shell of the model (top left-hand diagram) to an outer shell (bottom right-hand diagram).
The symbols represent the position of the orbits in the start spaces. The orbits in the inner right-hand quarter are in the (x, z) start space and the orbits placed in
the outer right-hand quarter are in the stationary start space (Section 4.3). The thick black line represents the equipotential (cf. Fig. 2). The orbits in the inner
left-hand quarter are the orbits from the (x, z) start space with reversed angular momentum and the orbits placed in the outer left-hand quarter is identical to the
outer right-hand quarter and are only drawn to make the panels symmetric. The symbols show the result of the orbit classification (based on angular momentum
conservation, Section 4.5): the crosses are box orbits, the stars correspond to short-axis tubes and the diamonds correspond to (both types of) long-axis tubes.
We have also overplotted the analytical curves that separate the different type of orbits (see also Fig. 2 and vdV08). The solid rising curve is the focal hyperbola,
with above it the long-axis tubes and below it the short-axis tubes and boxes. The crossing solid declining curve separates, respectively, between the inner and
outer long-axis tubes, and between the short-axis tubes and boxes. The thin curves indicate the location of the corresponding thin tube orbits.

and E, we use bisection to find the corresponding value of r0 that is
located on the equipotential. This three-dimensional set (E, θ , φ) of
start conditions, the ‘stationary start space’ (Schwarzschild 1993),
results in box orbits or boxlets only. Tube orbits always conserve
the sign of at least one component of the angular momentum and
therefore never reach zero velocity. Since the direction of the orbits
in this start space is not important it is not necessary to add velocity
mirrored copies of them during the fit.

By design the set of energies E and angles in θ in both start
spaces are identical, so that the orbits on the equipotential bound-
ary of the (x, z) start space have obvious neighbours in stationary
start space. While not necessary, the size of the third dimension
of the start spaces is chosen to be the same for consistency. Both
sets of orbits can be represented in a single figure, by graphically
connecting the corresponding starting spaces at the equipotential, as
shown in Fig. 3, where selected energies of the triaxial Abel model
(Section 4.1) are shown. In this figure we have overplotted the same
lines from Fig. 2, which shows that our numerical scheme to locate
the thin orbits indeed results in an orbit sampling from the correct
region. The stationary start space intersects with the xz start space
at the equipotential. In the figure all the orbits in the stationary start
space that are nearest to the equipotential are plotted just outside the
equipotential. Subsequent rows in the stationary start space are plot-
ted radially outwards. A mirror image of the stationary start space
is also plotted for symmetry.

4.4 Dithered orbit integration

The orbits in the start space are integrated numerically and their
properties stored. The integration is done in Cartesian coordinates,
using an explicit Runga–Kutta method of order 5(4) (DOPRI5 rou-
tine by Hairer, Norsett & Wanner 1993). With this method, the
majority of the orbits can be integrated with energy accuracies of

better than one part in 105. This routine is capable of dense output,
which enables you to get an interpolated position and velocity at
any time in current time-step during the integration.

To ensure numerical precision the Runga–Kutta integrator uses
more steps where the orbital trajectory changes direction quickly.
Since this usually happens when the ‘star’ is travelling with a
high velocity, the integrated time-steps do not represent the time-
averaged path of the orbit. To make sure this is not a problem we
use the dense output of the integrator, to sample the orbit on equal
time intervals, ensuring that the orbits are properly time weighted.

Single orbits correspond to delta-functions in integral space,
while the DF of a (partially) phase-mixed galaxy is expected to vary
smoothly (Tremaine, Henon & Lynden-Bell 1986). This limitation
may be reduced by combining nearby orbits (Richstone & Tremaine
1988; Rix et al. 1997). Here we extend this method by ‘dithering’
orbits in all three dimensions in the initial starting space. We do
this by taking a bundle of 53 orbits with different, but adjacent, ini-
tial conditions and sum their observables. This method is also used
in the construction of axisymmetric models (see Cappellari et al.
2006).

When calculating the starting spaces for the orbits we create more
starting points for the dithering. We enlarge the sampling three-
dimensional (E, θ , φ) start spaces five times in each direction. This
leads to 125 orbits per bundle. The odd number five was chosen
so that each bundle has a clearly defined central orbit (see fig. 6 in
Cappellari et al. 2006). The orbital properties of each of the orbits in
each bundle are simply co-added. As an alternative, it is be possible
to apply some form of (Gaussian) weighting. In this way the orbit
bundles could be made to overlap, but the effects of this have not
been studied.

Effectively, the model thus contains 125 times more orbits. The
dithering causes the orbital building blocks to be smoother, eliminat-
ing aliasing effects, especially when modelling spatially extended

C© 2008 The Authors. Journal compilation C© 2008 RAS, MNRAS 385, 647–666
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of Ui in phase space. The volume of the phase-space region repre-

sented by orbit i then follows as

Vi =
∫

χi d3r d3v, (21)

and accordingly the phase-space density along the orbit reads

fi ≡
wi

Vi

. (22)

3.2 Orbital weights from DFs

If we reverse the application of equation (22), and assign the orbital

weights according to some given DF f ,

wi = fi Vi , (23)

with fi ≡ f (I 1,i , . . . , I n,i ) now being the DF f evaluated at the

orbit’s position in integral space, then the DF f lib of the entire library,

which consists of the combined contributions of all orbits

flib =
∑

i

fiχi , (24)

will be the mapped version of f onto the library. Equation (23)

together with equations (6), (8) and (9) can be used to calculate the

LOSVDs, internal velocity profiles and density distribution of any

axisymmetric DF with known potential.

4 O R B I TA L P H A S E VO L U M E S

Two degrees of freedom. Binney, Gerhard & Hut (1985) have

shown that, for autonomous Hamiltonian systems with two degrees

of freedom, the phase volume of any orbit can be derived from the

SOS by integrating the times between successive orbital visits of

the SOS:

V ≈ "E

∫

SOS

T (r , vr ) dr dvr , (25)

where T (r , vr) is the time the orbit needs from (r , vr) to the next

intersection with the SOS, and "E defines a small but finite cell

around the orbit’s actual energy E characterizing the hypersurface

in phase space represented by the orbit.

Axisymmetric case. Richstone et al. (in preparation) carry over this

result to axisymmetric systems and approximate the phase volumes

as

V ≈ "Lz "E

∫

SOS

T (r , vr ) dr dvr . (26)

Here "Lz and "E denote the range of energies and angular mo-

menta represented by the orbit under consideration. Equation (26)

is valid whether the orbit is regular or chaotic.

Calculating the SOS integral. In what follows we describe our

novel implementation of equation (26), which improves on the

method of Richstone et al. (in preparation) to deliver higher-

precision phase-space volumes.

For all orbits in a sequence with common energy E and angular

momentum Lz we obtain a representative sample S of the SOS by

storing N sos imprints of each orbit in the SOS given by the radial

positions and velocities2 at the times t
k(s)
i of the orbital equatorial

crossings:

2 To reduce the computational effort we take the absolute values of the radial

velocities, thereby exploiting the symmetry of the SOS with respect to the

r-axis in our application.

Figure 2. A Voronoi tessellation of the SOS of Fig. 1. Open circles mark

individual intersections of orbits with the SOS; solid dots are points added

to make the Voronoi cells well behaved at the boundaries.

S ≡
{(

r s
i , v

s
i

)

: r s
i ≡ r

(

t
k(s)
i

)

, vs
i ≡

∣

∣vr

(

t
k(s)
i

)
∣

∣,

Ei = E, Lz,i = Lz, 1 ! s ! Nsos

}

. (27)

Typically, we integrate each orbit up to N sos = 80 intersections with

the SOS and choose N ′
sos = 60 points for the calculation of the

phase volumes randomly out of the whole set of intersections. We

also store the time intervals

t
(

r s
i , v

s
i

)

≡ t
k(s+1)
i − t

k(s)
i (28)

between two successive intersections.

Inspection of Fig. 1 shows that only a tessellation approach can

be used to numerically integrate equation (26) in the general case,

including regular, resonant and chaotic orbits. To this end we de-

cided to perform a Voronoi tessellation of S using the software of

Shewchuk (1996). This tessellation uniquely allocates a polygon to

each element of S. The edges of the polygon are located on the

perpendicular bisections of pairs containing the element under con-

sideration and one of its neighbours, and are equidistant to the actual

pair and a third element. For almost all elements the polygons are

closed and encompass an area containing the actual element and

all points that are closer to it than to any other element. The areas

enclosed by the polygons completely cover the space between the

elements and therefore characterize the fractional area inside the

SOS occupied by each orbit.

Fig. 2 shows the same SOS as in Fig. 1. The open circles represent

r and vr at the orbital equatorial crossings. The thin lines around

these circles mark the Voronoi cells allocated to the elements of S

and the solid dots show boundary points (see below).

With "As
i denoting the surface area enclosed by the polygon

around (r s
i , v

s
i ) ∈ S, the integral expression in the phase volume of

orbit i (cf. equation 26) can be approximated3 as
∫

SOS

T (r , vr ) dr dvr ≈
∑

s

t
(

r s
i , v

s
i

)

"As
i . (29)

At the boundary of the distribution of sampled points, there may

not be enough neighbours around a given element of S to close its

3 Note that the Poincaré map of the SOS onto itself is area-preserving, and

"As
i should be independent of s. The Voronoi tessellation, however, yields

only approximately constant "As
i . Nevertheless, as Section 5 shows, the

resulting phase volumes are of high accuracy.
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Recovery of the internal orbital structure of galaxies 17

Figure 9. The colours represent the mean motion 〈vy〉 perpendicular to the (x, z)-plane, normalised by σRMS (excluding the axes to avoid numerical
problems), for the input triaxial Abel model (left) and for the best-fit triaxial Schwarzschild model (right). The ellipses are cross sections of the velocity
ellipsoid with the (x, z)-plane and the crosses represent the (relative) size of the velocity ellipsoid in the perpendicular (y-axis) direction. The black curves
are contours of constant mass density in steps of one magnitude, for the input Abel model (solid) and for the fitted Schwarzschild model (dashed). See § 5.3
for details.

system, so that its semi-axis lenghts σa ≥ σb ≥ σc follow directly
from σ2

τ = 〈v2
τ 〉 − 〈vτ 〉2 with τ = λ, µ, ν. In general, this is not

the case for the triaxial Schwarzschild model, and instead we diago-
nalize the (symmetric) velocity dispersion tensor with components
〈σst〉 (s, t = x, y, z). As before, the axis ratios of the velocity ellip-
soid are quite well recovered by the best-fit Schwarzschild model,
except towards the z-axis (upper panels) where it underestimates
the anisotropy in the velocity distribution of the input Abel model.
Similarly, away from the (x, z)-plane (φ = 0◦, black curves), the
Schwarzschild model increasingly overestimates the σb/σa ratio,
while the σc/σa remains well reproduced. It is plausible that the
recovery in the (x, z)-plane is better, because it is optimally sam-
pled as starting space for the numerical orbit calculations, and it
is crossed perpendicularly by all four major orbit families. Never-
theless, the absolute difference in σa, σb and σc between the in-
put Abel model and the best-fit Schwarzschild model is on average
∼ 9 km s−1. The axis ratios σb/σa and σc/σa are on average re-
covered within ∼ 6%.

5.4 Three-integral distribution function

The fitted triaxial Schwarzschild model results in a mass weight γ
per orbit. These mass weights are a function of the three integrals
of motion (E, I2, I3). In general, only the energy is exact, but for
a separable potential I2 and I3 are also known explicitly and given
by eq. (2.5). The orbital mass weights follow from the DF by in-
tegrating f(E, I2, I3) over the part of phase-space (x,v) that is
accesible by the orbit. Since each orbit is a (unique) delta-function
in integral-space, the resulting orbital mass weights are in principle
zero. However, as described in § 5.1 and § 5.2, final orbits con-
sists each of a bundle of 125 orbits started closely to each other and

their assigned mass weights are required to vary smoothly between
neighbouring orbits.
To estimate the orbital mass weights from the input triaxial

Abel model, we divide the integral-space in finite cells and link
each cell to the orbit that corresponds to its centroid. The corre-
sponding mass weights then follow from

γ(E, I2, I3)=

ZZZ

cell

f(E, I2, I3) ∆V (E, I2, I3) dEdI2dI3, (5.2)

where

∆V (E, I2, I3) =

ZZZ

Ω

˛

˛

˛

˛

∂(vx, vy, vz)
∂(E, I2, I3)

˛

˛

˛

˛

dxdy dz, (5.3)

with Ω the volume in configuration space accessible by the orbit.
The multi-component DF of the input triaxial Abel model consists
of basis functions defined in eq. (2.24), with the DF parameters and
weights per component given in § 4.3. Below, we first calculate∆V
and the cell in integral space, and then return to the comparison of
the orbital mass weights.

5.4.1 Integral over configuration-space

The expression for ∆V (E, I2, I3) of a single orbit in a triaxial
Stäckel potential can be deduced from the relations in § 7.1 of de
Zeeuw (1985a). It is given by

∆V (E, I2, I3) = (γ − α)

ZZZ

Ω

(λ − µ)(µ − ν)(ν − λ)
a(λ)a(µ) a(ν)

×

s

8(λ + β)(µ + β)(ν + β)
[E−Veff(λ)] [E−Veff(µ)] [E−Veff(ν)]

dλdµ dν, (5.4)
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Figure 13. The orbital mass weights (in % of the total mass) for the input triaxial Abel model (diamonds connected by solid curves) and for the best-fit triaxial
Schwarzschild model (crosses connected by dotted curves), as function of each of the three integrals of motion. These ’projections’ of the three-dimensional
orbital mass weight distribution shown in Fig. 12 are obtained by collapsing the cube in (E, I2, I3) in two dimensions. As before, we represent the energy E
in the first panel by the radius RE (in arcsec) of the thin short-axis tube orbit on the x-axis. For the second and third integral of motion, I2 and I3, we use
the index in the cube, since the (range of) their values changes with E. The total distribution (black colour) is split into contributions from the non-rotating
(NR; red), long-axis rotating (LR; green) and short-axis rotating (SR; blue) components. Moreover, for each rotating component the contributions from the
two directions of rotation are separated by making the mass weights for one of the directions negative.

for both senses of rotation, we can control the direction and the
amount of streaming motion.
In the conversion to observables described in § 3, the ma-

trix Q, which transforms the velocity components (vλ, vφ, vν) to
(vx, vy , vz), reduces to

Q =

0

@

A cosφ − sinφ −B cosφ
A sinφ cosφ −B sinφ

B 0 A

1

A , (6.2)

where A and B are defined as

A2 =
(λ+ γ)(ν + α)
(λ− ν)(α− γ)

, B2 =
(λ+ α)(ν + γ)
(λ− ν)(γ − α)

. (6.3)

Because of the symmetry around the short-axis, the azimuthal
viewing angle ϕ looses its meaning and the misalignment angle
ψ = 0◦. We are left with only the polar viewing angle ϑ, which is
commonly referred to as the inclination i, with i = 0◦ face-on and
i = 90◦ edge-on viewing. As a consequence, the projection matrix
P is a function of i only and follows by substituting ϑ = i and
ϕ = 0 in eq. (3.4). The rotation matrix R in eq. (3.5) reduces to
the identity matrix, so thatM = PSQ.
The expression for the LOSVD follows from that of the tri-

axial case in eq. (3.27) by substituting µ = −β = −α. For the
NR components, again ∆ξ′NR = 2π and the simplified expression
(3.28) holds in case of a DF basis function as defined in eq. (2.24).
To introduce net rotation, we require that (vµ =) vφ ≥ 0 as in
§ 3.3.4, which yields SR components with maximum streaming. As
illustrated in the right panel of Fig. 3,∆ξ′SR is the length of the part
of the circle between the intersections ξ± = 2arctan(u±)with the
line (with u± given in eq. 3.38), and which is on the correct side of
the line in eq. (3.37). This is again similar to SR components in the
triaxial case, but without the restriction to stay within the ellipses.

6.1.2 Prolate axisymmetric model

When β = γ #= α (T = 1), we replace the coordinate ν by
the angle χ, defined as tanχ = z/y. The resulting coordinates
(λ, µ,χ) follow from the above coordinates (λ,φ, ν) by taking
ν → µ, φ → χ, and γ → α → β. The Stäckel potential
VS(λ, µ) = U [λ, µ,−γ] is now prolate axisymmetric. By substi-
tuting ν = −β = −γ in eqs (2.5) and (2.10), we obtain the ex-
pressions respectively for the integrals of motion (with I3 = 1

2L2
x)

and for the intrinsic velocity moments µlmn(λ, µ). From Fig. 1, we
see that now the upper limit on u vanishes. For the NR components,
Smax = Stop(λ, µ,−γ), and since we only have the long-axis tube
orbits, we can introduce net rotation (around the x-axis) by setting
the DF to zero for Lx < 0, so that µLR

lmn(λ, µ) = 1
2µNR

lmn(λ, µ).
These LR velocity moments vanish if either l orm is odd and mul-
tiplication with (−1)n yields net rotation in the opposite direction.
The matrix Q, which transforms (vλ, vµ, vχ) to (vx, vy, vz),

in this case reduces to

Q =

0

@

C −D 0
D cosχ C cosχ − sinχ
D sinχ C sinχ cosχ

1

A , (6.4)

where C andD are given by

C2 =
(λ+ β)(µ + α)
(λ− µ)(α− β)

, D2 =
(λ+ α)(µ + β)
(λ− µ)(β − α)

. (6.5)

In the projection matrix P in eq. (3.4), we substitute ϑ = π/2 − i
and ϕ = 0, so that for inclination i = 0◦ and i = 90◦, we are
respectively viewing the prolate mass model end-on and side-on.
In the rotation matrix R we take ψ = 90◦ to align the projected
major axis horizontally. The expression for the LOSVD follows
from eq. (3.27) by substituting ν = −β = −γ, and by requir-
ing (vν =) vχ ≥ 0 we obtain LR components with maximum
streaming. As for the oblate case and illustrated in the left panel
of Fig. 3, ∆ξ′SR is the length of the circle part between the angles
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Figure 1. First six Gauss–Hermite moments of the LOSVD in NGC 3379. Left-hand panels show the inner 10 arcsec2 of the SAURON field, with the OASIS
field overlaid. In these plots, north is up and east is to the left-hand side. Right-hand panels show the LOSVD moments as seen through a 1-arcsec slit placed
along the galaxy’s major axis (PA = 70◦) as observed with SAURON (black) and OASIS (blue). Red, magenta, cyan and green points indicate the long-slit
major axis data of Statler & Smecker-Hane (1999); Gebhardt et al. (2000b); Halliday et al. (2001) and Samurović & Danziger (2005), respectively. The small
OASIS PSF allows the data to probe the central rise in velocity dispersion with more detail than in previous measurements or in the SAURON data.
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Figure 5. MGE fit to the data along three PAs (left-hand panels), with
percentage error (right-hand panels). All individual Gaussian components
are shown, as well their sum, which fits the surface brightness data (boxes)
over four orders of magnitude in radius. This model was generated from
combined HST/WFPC2 data and ground-based wide-field MDM imaging
and was presented in Cappellari et al. (2006). The strong ‘core’ signature
can be seen inwards of ∼2 arcsec.

The resulting Hα + [N II] image reveals a well-defined disc of
emission around the galaxy centre. The regularity of this disc allows
for a simple and precise measurement of its photometric PA and
inclination. We fit an ellipse by eye to the outline of the disc in this
image and measured the PA to be 118◦. If the disc is assumed to be
thin and intrinsically circular, then the inclination implied by this fit
is i disc = 70◦ ± 8◦, where the error bar includes the inclination of
the dust disc associated with the gas and an ellipse fit to the OASIS
gas data.

Cappellari et al. (2006) have used the F814W WFPC2 image of
NGC 3379, in addition to wide-field ground-based photometry taken
in the same filter at the 1.3-m McGraw-Hill telescope at the MDM
observatory on Kitt Peak, to construct a multi-Gaussian expansion
(MGE) parametrization of the surface brightness of this galaxy
(Emsellem et al. 1994; Cappellari 2002). Their deconvolved MGE
model was regularized to require that the axial ratio of the flattest
Gaussian be as large as possible and was corrected for extinction.
The resulting best-fitting MGE, a sum of 13 Gaussian components,
is presented in their fig. 3, and the calibrated parameters, corrected
for extinction and converted to a stellar surface density in solar units,
are given in their table B1. In Fig. 5, we show the MGE fit to the sur-
face brightness along several PAs, as well as the residuals of this fit.
We adopt this parametrization to describe the stellar surface density
distribution in this galaxy.

3.2 STIS spectroscopy

Long-slit spectra of the central gas disc in NGC 3379 were ob-
tained with the HST Space Telescope Imaging Spectrograph (STIS),
through a 0.2-arcsec slit and through the G750M filter with the grat-
ing tilted to provide a spectral range 6300–6860 Å. With this set-up,
these data included the Hα and both [N II] emission lines in this

Table 2. Specifications of the HST/STIS observations.

Number of exposures Average texp (s) Nominal shift Actual shift

Top slit 5 2600 + 0.25 arcsec + 0.25 arcsec
Centre slit 5 2700 0.00 arcsec 0.00 arcsec
Bottom slit 4 2550 − 0.25 arcsec − 0.20 arcsec

galaxy, at a spectral resolution of 0.554 Å pixel−1 and a spatial sam-
pling of 0.051 arcsec pixel−1.

Target acquisition and peak-up procedures were performed to
centre the STIS slit on the nucleus of the galaxy. Spectroscopic
images were then obtained at each of three locations: at the galaxy
centre and with a nominal offset ±0.25 arcsec perpendicular to the
slit, with a resulting gap of 0.05 arcsec between slits. Due to the
scheduling of the observations, there was no observability at the
requested PA along the major axis of the gas disc; consequently,
the observations were taken at a PA = −104.◦7, approximately 40◦

offset from the major axis. This slit positioning and location is shown
in Fig. 4, and we designate the ‘top’, ‘centre’ and ‘bottom’ slits
according to their location in this figure.

Data were acquired in five exposures on the top and centre slits
and four on the bottom slit. Observation details are presented in
Table 2. Individual exposures were spatially dithered along the slit
in order to avoid systematic effects. The images were processed
by the HST data processing pipeline, including wavelength calibra-
tion, after which they were combined and cosmic ray rejected. The
resulting STIS data for all three slits is shown in Fig. 6.

We use the STIS data themselves to measure the actual positions
of the slits by collapsing the spectra over the spectral range and
comparing that light profile to light profiles extracted from the ac-
quisition image taken during the peak-up procedure. These latter
profiles were extracted from the acquisition image by averaging the
flux of pixels (and fractions of pixels) covered by synthetic 0.2-
arcsec STIS slits. The best-fitting slit positions were determined
using a χ 2 minimization of the ratio between the light profile mea-
sured from the slits and that measured from the acquisition image.
For the top and centre slit, the nominal offset is indeed the actual
offset, to within a fraction of a STIS pixel. For the bottom slit, the
actual offset is −0.20 arcsec, which deviates from the nominal off-
set of this slit by ∼1 STIS pixel. These results are summarized in
Table 2.

3.3 Gas kinematics

The gas kinematics in NGC 3379 were extracted for each individual
row of all three STIS slits. As would be expected from the WFPC2
Hα + [N II] image, the emission signal drops off dramatically at the
boundaries of the gas disc; therefore, all rows with detectable signal
were used. This results in gas kinematics being obtained for roughly
the inner 2 arcsec of the galaxy.

To measure the kinematics, we first removed the stellar back-
ground emission by fitting a linear continuum to 6475–6525 and
6625–6675 Å. Over this spectral range, a straight line is a good ap-
proximation to the continuum shape. The Hα and the [N II] λ6584
lines were then fit separately by single Gaussians. The [N II] λ6548
emission was not used, as it has low signal in all rows and is not
detectable at larger radii (see Fig. 6). No other emission lines were
detected. The higher [N II] λ6584 signal than Hα and the lack of
other significant emission lines are consistent with the classification
of NGC 3379 as a LINER galaxy.

Fig. 7 shows the derived [N II] λ6584 and Hα kinematics, set to a
systemic velocity of zero. Over most of the disc, the two lines share
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Figure 10. Analogous to Fig. 9, except here the third row from the top is a prediction of the OASIS kinematics from the model fitting only SAURON data, and
the bottom row is the fit to the OASIS kinematics from the model fitting only OASIS data. The model fitting only the SAURON data clearly underpredicts the
central velocity dispersion, due to the lack of high-resolution kinematics in the vicinity of the black hole. The model fitting only the OASIS data, on the other
hand, has such freedom with the orbital structure that it reproduces nearly all the features in the fields, including some of the noise. Note that contour levels on
the velocity dispersion have been rescaled from Fig. 9 to aid the eye.

SAURON data not quite sensitive enough to tiny differences in the
predicted central velocity dispersions for varying black hole masses.
Their results with the OASIS data, on the other hand, are identical to
those here; taken alone, their OASIS data were able to exclude the
no-black hole scenario to high significance but otherwise provided
few constraints. They conclude that only the combined data set,
with both high-resolution data and wide-field data, is capable of
determining both M/L and MBH, as also seen here in Figs 9 and 10.

Gebhardt et al. (2003) and Krajnović et al. (2005) have also tested
the effects of spatial resolution and coverage, respectively. Gebhardt
et al. (2003) measured the black hole masses in 12 nearby elliptical
galaxies with stellar dynamical models, using combined HST and
ground-based data and also using ground-based data alone. They
found that the ground-based data yields a black hole mass consistent
with that from the combined data set, but at a reduced significance.
Their high-resolution HST data were needed to probe the spheres
of influence of the black holes, which mimics the need for OASIS
seen here. They also note that models using HST data alone were
unable to constrain the LOSVD at large scales, as seen here with the
OASIS-only model. To study the effect of spatial coverage in more
detail, Krajnović et al. (2005) constructed a series of models of a
two-integral test galaxy with simulated SAURON data out to 1 and
2 Re. Their results indicated that the orbital structure was recovered
well by both models. As the SAURON data of NGC 3379 extends
to roughly 1 R e (= 42 arcsec; Cappellari et al. 2006), the tests of
Gebhardt et al. (2003) and Krajnović et al. (2005) illustrate that
these wide-field data are both necessary and sufficient to measure the
orbital structure of NGC 3379 on large scales. When combined with
the OASIS data, which resolves the black hole’s sphere of influence,

the model can reliably measure the galaxy’s orbital structure on both
small and large scales.

Since there has been significant recent debate concerning the ef-
fects of regularization on black hole mass measurements, we gen-
erated a set of models for the SAURON + OASIS data set without
smoothing in integral space (! = 1 × 103). The results are com-
pletely consistent with those of the ! = 4 models; there is perfect
agreement on the black hole mass, M/L, and velocity distribution
(presented in the following section). The uncertainties on these mea-
surements are similar for the ! = 4 and 1 × 103 models, with those
of the non-regularized models being slightly smaller. This simple
test thus demonstrates that including moderate regularization of !=

4 in the models is not driving the results and consequently does not
impact our conclusions (see also Section 8.2 for further discussion).

As a final test of the robustness of these results, we examined
the effects of our assumed inclination on the measured black hole
mass. In addition to the edge-on models presented above, we gen-
erated a series of models near the minimum possible inclination.
Deprojection of the MGE model places a strict minimum of 35◦ on
the inclination; however, inclinations of less than ∼45◦ require that
the axial ratio of many of the Gaussian components be smaller than
0.2, implying that the galaxy is a thin disc. We therefore adopt a test
inclination of i = 50◦, and the results are shown in Fig. 14. Although
the edge-on configuration is formally a better fit to the data, the tests
of Krajnović et al. (2005) indicate that inclination determinations
may be degenerate, and we restrict our interpretation of this result
to noting that the assumed inclination plays a role in the measured
black hole mass at the 50 per cent level. Similar levels of depen-
dence has been previously observed by, for example, Gebhardt et al.
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Figure 9. From top to bottom: the SAURON symmetrized kinematic data, the best-fitting model with both the SAURON and OASIS data fitted, the model
that best fits only the SAURON data and the predictions for the SAURON field from the model that best fits only the OASIS data. The model that uses only the
SAURON data differs little from the model using the combined data set. The model that uses the OASIS data set suffers greatly from the lack of constraints
outside 5 arcsec and consequently generates an unphysical orbital structure. (Note that the high-velocity region at x ∼ 0 arcsec, y ∼ −20 arcsec in the data is a
foreground star and is masked during the modelling.)

the OASIS data are a powerful probe of the black hole mass. As
shown in two dimensions in Fig. 12 and along the major axis with
errors in Fig. 13, inspection alone is sufficient to locate the best-
fitting model when the combined SAURON and OASIS data sets
are used. This suggests that the best-fitting model from the combined
data sets also provides an accurate representation of the stellar orbit
structure in the central regions of the galaxy. To test this hypoth-
esis, this best-fitting model was used to predict the higher spatial
resolution STIS and FOS stellar kinematics, and these predictions
were completely consistent with those measurements. The ability
of the OASIS data to resolve the black hole sphere of influence
therefore provides sufficient constraints on the central stellar orbit

structure that the predicted stellar dynamics from this model can be
extrapolated to much smaller scales.

Neither the results from the SAURON-only model nor those of
the OASIS-only model are unexpected; similar results were seen by
Copin, Cretton & Emsellem (2004) in their models of NGC 3377
using SAURON and OASIS data for that galaxy. They found, as
here, that the wide-field SAURON data are critical in constraining
M/L; however, unlike this study, they also found that the SAURON
data alone were unable to provide useful limits on the SMBH mass
in NGC 3377. This difference is likely due to the combined effects
of a slightly lower S/N in their SAURON data and worse seeing
during those observations, which conspire to render the NGC 3377
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Figure 9. From top to bottom: the SAURON symmetrized kinematic data, the best-fitting model with both the SAURON and OASIS data fitted, the model
that best fits only the SAURON data and the predictions for the SAURON field from the model that best fits only the OASIS data. The model that uses only the
SAURON data differs little from the model using the combined data set. The model that uses the OASIS data set suffers greatly from the lack of constraints
outside 5 arcsec and consequently generates an unphysical orbital structure. (Note that the high-velocity region at x ∼ 0 arcsec, y ∼ −20 arcsec in the data is a
foreground star and is masked during the modelling.)

the OASIS data are a powerful probe of the black hole mass. As
shown in two dimensions in Fig. 12 and along the major axis with
errors in Fig. 13, inspection alone is sufficient to locate the best-
fitting model when the combined SAURON and OASIS data sets
are used. This suggests that the best-fitting model from the combined
data sets also provides an accurate representation of the stellar orbit
structure in the central regions of the galaxy. To test this hypoth-
esis, this best-fitting model was used to predict the higher spatial
resolution STIS and FOS stellar kinematics, and these predictions
were completely consistent with those measurements. The ability
of the OASIS data to resolve the black hole sphere of influence
therefore provides sufficient constraints on the central stellar orbit

structure that the predicted stellar dynamics from this model can be
extrapolated to much smaller scales.

Neither the results from the SAURON-only model nor those of
the OASIS-only model are unexpected; similar results were seen by
Copin, Cretton & Emsellem (2004) in their models of NGC 3377
using SAURON and OASIS data for that galaxy. They found, as
here, that the wide-field SAURON data are critical in constraining
M/L; however, unlike this study, they also found that the SAURON
data alone were unable to provide useful limits on the SMBH mass
in NGC 3377. This difference is likely due to the combined effects
of a slightly lower S/N in their SAURON data and worse seeing
during those observations, which conspire to render the NGC 3377
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and mass distribution in the χ2 sense. In the case of NGC 3379, sev-
eral stellar dynamical models have already been constructed, some
of which indicate that this galaxy is likely seen edge-on (Gebhardt
et al. 2000b). However, the inclination of this galaxy has been the
source of much debate, including suggestions that it is instead a
face-on S0 (Capaccioli et al. 1991; Statler & Smecker-Hane 1999;
see also Section 8.2). Subsequent models by Statler (2001), on the
other hand, find that the most probable inclination is more moderate,
at i ≈ 40◦. With the MGE surface brightness parametrization, we
can set a lower limit on the inclination of i = 35◦ from the depro-
jection of the narrowest Gaussian component. Following previous
stellar dynamical results, we construct our primary set of models at
i = 88◦ (to avoid possible numerical artefacts at exactly 90◦), but we
supplement these with relatively face-on models at i = 50◦ to test
the effects of inclination on the black hole mass measurement. In
both sets of models, we vary the M/L and MBH to fit the combined
SAURON and OASIS data sets and investigate the internal structure
of NGC 3379.

5 S T E L L A R DY NA M I C A L M O D E L L I N G :
R E S U LT S

5.1 Best-fitting models

The χ 2 results from the edge-on stellar dynamical model are shown
in the right-hand panel of Fig. 8, with the best-fitting model being
described by a black hole of mass 1.4+2.6

−0.2 × 108 M% and with M/L =

3.08 ± 0.2 M%/L% (errors are 3σ ). The model predictions for the
SAURON and OASIS kinematic fields are compared to the data
in Figs 9 and 10, respectively; in general, these models do a very
satisfactory job of reproducing the observations.

As a test of the effect of data resolution and spatial coverage on
model results, we also ran models with the SAURON and OASIS
data sets individually and show the resulting χ2 contour plots in
Fig. 8. (We call these models the SAURON-only model, which fits
the SAURON data and merely predicts the OASIS kinematics, and
the OASIS-only model, which fits only the OASIS data and predicts
the SAURON kinematics.) Both of these supplementary models
have a best-fitting black hole mass and M/L consistent with the
model constructed using the combined data sets.

While it is clear that the wide-field SAURON data play the dom-
inant role in constraining the stellar M/L, it is rather remarkable
that these data are also able to constrain the black hole mass so
well, given that the sphere of influence RBH ∼ 0.29 arcsec is well

Figure 8. χ2 contours for the SAURON-only models (left-hand panel), OASIS-only models (middle panel) and the models using the full, combined data set
(right-hand panel). M/L is measured in solar units. Diamonds indicate locations where models were constructed. The thin lines are contours of integer values
of the standard deviation, and thick contours indicate 3σ . Models at M BH = 0 were also constructed but are not shown here; in all cases, those models are
excluded to at least 4σ .

below the resolution and seeing limit of the SAURON observations.
This black hole mass measurement must therefore be due to minute
differences in the model predictions for the centre-most spatial ele-
ment. This is apparent in Fig. 11, which shows the model velocity
dispersions for different black hole masses; the central regions of
SAURON field display almost no detectable difference in veloc-
ity dispersion for extremely large variations in black hole mass (and
likewise for other moments of the velocity distribution). This ability
of the SAURON data to discriminate between such similar models
speaks to the high quality of the data [(S/N)centre ≈ 560], but care
must be taken when further interpreting these results. Fig. 10 shows
that the best-fitting SAURON-only model drastically underpredicts
the central velocity dispersion observed in the higher resolution OA-
SIS data. Thus, while the SAURON-only model is able to constrain
the black hole mass, the lower spatial resolution of these data, and
their correspondingly poor sampling of the black hole’s sphere of
influence, render them incapable of correctly measuring the central
orbit structure. This is even more clearly seen in Fig. 12; the higher
resolution OASIS data, even in a model without a black hole, require
a more physical (centrally peaked) velocity dispersion distribution
than that predicted for the OASIS field by the SAURON-only model.
This test is a simple example of both the strengths and limitations
of using data of insufficient resolution to study the central regions
of galaxies; with high-quality data it may be possible to obtain ac-
curate black hole masses, but it would be inadvisable to use those
results in a more detailed discussion of the stellar dynamics in the
galaxy centre.

The OASIS data, on the other hand, have higher spatial resolu-
tion than the SAURON data but also have dramatically lower spatial
coverage. The ability of the OASIS data to resolve the black hole’s
sphere of influence in two dimensions ensures that varying black
hole masses will have noticeable effects on the predicted stellar
kinematics. At first, it is therefore a bit surprising that the χ2 con-
tours for the OASIS-only models (Fig. 8) are so broad and that the
OASIS data alone are incapable of measuring the black hole mass
with much significance. Fig. 9 immediately resolves this issue; the
lack of spatial coverage in the OASIS data gives the model com-
plete freedom to vary the orbital distribution throughout the galaxy,
since it is constrained only in the central few arcsec. The prediction
for the SAURON (wide-field) data from the OASIS-only models
is utterly unrealistic, since models with so much freedom in the
galaxy’s orbital structure cannot be depended upon to accurately
extrapolate to large scales. However, when the SAURON data are
included as constraints on the large-scale structure of the galaxy,
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Figure 11. Velocity dispersions (in km s−1) as observed in the SAURON field (left-hand panel) and as modelled with varying black hole masses (indicated
above each model, measured in M"). Due to the small sphere of influence of any SMBH (on the scale of a SAURON pixel in all cases), differences between the
various models occur only in central pixel and are nearly undetectable. The models shown here are for the SAURON + OASIS data set; however, the results for
the SAURON data cube from the SAURON-only model are virtually identical. In both cases, the dispersion of the central pixel alone is sufficient to constrain
the black hole mass.

Figure 12. As in Fig. 11, but for the OASIS field instead. The high-resolution OASIS data probe the black hole’s sphere of influence and thus provide significant
leverage in measuring the mass of the SMBH. The black hole mass is constrained almost entirely by the velocity dispersion (displayed here); this is demonstrated
explicitly in Fig. 13. The models shown reflect the SAURON + OASIS model; as is clear in Fig. 9, the OASIS-only model is unable to properly constrain the
orbital structure and is therefore useless in this sort of comparison.

(2000b) for this galaxy and Verolme et al. (2002) for M32. Because
of the potential degeneracy in the determination of inclinations, we
cannot claim a definitive measurement of the inclination of NGC
3379, and we therefore marginalize over the two tested inclinations
in our error estimates. This constrains the black hole mass to 1.4+0.3

−0.8
× 108 M" (1σ ), or 1.4+2.6

−1.0 × 108 M" (3σ ). For our analysis of the
model results, we use the best-fitting model, which has i = 88◦,
M/L = 3.08 and M BH = 1.4 × 108 M".

5.2 Stellar dynamics near the SMBH

The inclusion of the OASIS high-resolution two-dimensional data
in the stellar dynamical models provides us with the unique oppor-
tunity of probing the stellar velocity distribution in three dimensions
in the vicinity of the central SMBH. By measuring the kinematics
of the solution set of orbits, we can study the full three-dimensional

motions of stars. In particular, we examine the velocity ellipsoid,
the shape of which has been linked to the steepness of the central
surface brightness profile (i.e. ‘cusp’ or ‘core’) and the nature of the
central SMBH (i.e. single object or binary system, see Quinlan &
Hernquist 1997; Gebhardt et al. 2003).

Fig. 15 shows the ratio of the radial velocity dispersion σ r of
the stars to their tangential velocity dispersion [σ t, defined as σ 2

t =

(σ 2
φ + σ 2

θ )/2] over all observed radii. Note that σ φ includes only
random, and not ordered, motion such that an isotropic distribution
is characterized by σ r = σ t. In NGC 3379, the anisotropy profile
shows a mild radial anisotropy throughout most of the galaxy. Within
Rc, down to the limit of our spatial resolution, the distribution is
consistent with isotropy.

However, in other core galaxies, the velocity distribution within
Rc has been observed to be tangentially biased (Gebhardt et al.
2003), and this correlation has been hypothesized to be the fossil
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TRIAXALITY

• We first tested the axisymmetric 
case and found the same Mbh 
and M/L. 

• Then we tried triaxial geometries 
and found a black hole mass that 
is 3 times bigger, mostly due to a 
more face-on viewing angle

1776 R. C. E. van den Bosch and P. T. de Zeeuw

Figure 8. Comparison of the OASIS central point-symmetrized stellar kinematics (left) of NGC 3379 and models with different black hole masses (1, 4, 7) ×
108 M" on the right. Stellar mean velocity (Top row) ranges from −60 to 60 km s−1 and the dispersion ranges from 190 to 230 km s−1. The 4 × 108 M"
is the best-fitting model, while the others are not capable of reproducing the observed central dispersion. The twist in the mean-velocity field is reproduced
perfectly in the triaxial model, which is something that would be impossible for a pure axisymmetric model. While the higher moments are fitted, they are not
shown as their contribution is not nearly as important as the first two moments (they are shown in S06).

M• is just outside of the scatter of the M•–σ relationship, as that
predicts 108.13±0.06±0.27 = (1.4+1.5

−0.7) × 108 M", placing our estimate
on the heavy side of this relationship. S06 showed that the gas disc
inside cannot be fit by simple Keplerian motion, implying that the
gas disc is disturbed and may not be a good candidate for probing
the dynamical black hole mass. Nevertheless, they constructed an
ad hoc and non-unique model and estimated (2.0 ± 0.1) × 108 M",
which is lower than our estimate.

Even with a mildly triaxial shape, the long axis and box orbits can
contribute a significant fraction (Hunter & de Zeeuw 1992). Inside
one intrinsic Re our model consists of 70 per cent, 20 per cent and
10 per cent short axis, long axis tubes and box orbits, respectively.
The orbital structure (Fig. 9) of the triaxial model reveals that NGC
3379 is radially anisotropic inside the sphere of influence of the
black hole (R•) and at most mildly radially anisotropic outside.
This is different from S06, which showed NGC 3379 to be isotropic
inside the core radius. In our model, the box orbits contribute most of
the mass inside R•, and thus the model becomes strongly radially
anisotropic in the centre (Fig. 9). This is very different from an
axisymmetric model, in which box orbits cannot exist.

The box orbits in the centre could even be the cause of our
high M•. In the face-on view of these models (28◦ < ϑ < 49◦),
the stars on box orbits in the centre have the highest dispersion in
the direction perpendicular to the viewer and can therefore affect the
central observed dispersion. This is exactly opposite to a mechanism
suggested by Gerhard (1988) that essentially makes the black hole
unnecessary by viewing the galaxy down the x-axis (end-on) – the
box orbits would then account for the high velocity dispersion in
the centre.1

1 This is also in contradiction with our end-on model of M32, which did
need a black hole.

Figure 9. Orbital structure of NGC 3379. Top plot shows orbital anisotropy

σR/σT =
√

2σ 2
R/(σ 2

φ + σ 2
θ ) and the bottom plot shows the orbit type as

a function of radius. The model is mildly radially anisotropic outside R•
and strongly anisotropic inside R•. The short axis tubes (blue solid line)
dominate the galaxy outside R•, while the box orbits (black dotted line)
become more important inside R•. The long axis tubes (red dashed line) are
roughly constant at 20 per cent.

4 R E L I A B I L I T Y O F T H E BL AC K H O L E M A S S
ESTIMATES

To get to our best-fitting models of M32 and NGC 3379, we had to
first assume a M•, find the best-fitting shape and then find the best-
fitting M•, because the alternative – searching the full parameter
space – is computationally unpractical. We search the shape param-
eter space first because an initial guess for M• can be done using
M•–σ and we know from van den Bosch & van de Ven (2008) that
the influence of shape on the quality of the fit is much bigger than
that of the black hole, usually more than a factor of 10 in %χ 2. How-
ever, this procedure is not guaranteed to find the global minimum.
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reassuring to see that we can even reproduce the shape of the con-
fidence intervals (but see van den Bosch et al. 2008). The allowed
viewing angles cover a large range, but prefer strongly inclined
(face-on) views, which is also consistent with the results from de
Lorenzi et al. (2009).

It is important to notice that at the 3σ level the shape is not con-
strained well, allowing almost all viewing angles (ϑ , ϕ) and a large
allowed range in shapes (see Fig. 6). A pure oblate axisymmetric
spheroid is excluded at the 2σ level, and this happens because the
axisymmetric model cannot reproduce the twist in the zero veloc-
ity curve ($χ 2 > 200). This is shown in Fig. 5. The differences
between the axisymmetric (third panel from the left in Fig. 5) and
triaxial (second panel from the left in Fig. 5) model are not very
prominent; the most visible change can be seen in the (twisting)
shape of the zero-velocity curve.

Since S06 uses bi-symmetrized kinematics and the axisymmetric
models use different intrinsic mass bins, it is not possible to directly
compare the χ 2 of those models with ours. To do a direct com-
parison, we recreated the original axisymmetric model from S06
with the triaxial machinery, without bi-symmetrizing, but with the
kinematic misalignment correction (see Section 3.2.1). We expected
that this original axisymmetric model would fit the data better than
the axisymmetric model – because the latter does not correct
for the misalignment – but this is not what we found (rightmost
panel in Fig. 5). The kinematics of the best-fitting triaxial axisym-
metric model are statistically a significantly much better fit, with a
difference in $χ 2 > 900. The differences show up in the twist of
the zero-velocity curve and the ‘hexagonal shape’ of the velocity
dispersion. It seems that in this case the twist of this galaxy was
overestimated due to the inaccurate determination of the photomet-
ric or kinematic PA. Both are possible because NGC 3379 is very
round, has some isophotal twist and does not have a strong velocity
field. Luckily, the triaxial modelling (as opposed to the axisymmet-
ric modelling) does not depend on these measurements, as it only
requires that the relative orientation between the photometry and
kinematics be known.

Given that the shape cannot be constrained accurately, our choice
of the M• might influence the recovered shape. To test if this was
the case, we checked to see if the recovered shape would differ if
we set M• = 0. The shape recovered was not different.

The intrinsic orientation of the central gas and dust disc in this
galaxy is interesting due to its apparent misalignment of ∼50◦ with
the main body of the galaxy. The only stable configurations in
a stationary triaxial geometry are in the principal planes. Statler
(2001) did a thorough analysis and concluded that, if the disc lies in
a plane, the only option that he could not rule out was a polar ring.
Lauer et al. (2005) showed that stellar photometry inside 1 arcsec
has a sudden PA twist of more then 20◦, towards the gas disc. The
gas disc has a size of 4 arcsec and is thus at larger radii than this
stellar feature, but the two could be connected. Also, S06 found
evidence that the gas disc might be warped using an ad hoc model,
indicating that a simple stable gas disc in a plane might actually not
be a good description. Our current mass model does not include any
isophotal twist and therefore does not predict if these two features
are intrinsically aligned. To do that, a mass model with isophotal
twist would be needed. As an added benefit, such a mass model
with isophotal twist will lower the amount of possible deprojection,
which would indirectly help constrain the shape of this galaxy.

In our current modelling without isophotal twist, the allowed
range in viewing angles is large, and it might thus be possible to
place the ring in a principal plane. The ring is misaligned 45◦ from
the photometric PA, so to place the ring in a principal plane we need

Figure 7. The M• (top) and the M/L (bottom) confidence levels as function
of the different triaxial shapes (see text). The small red crosses represent the
values for which models were computed and the big black crosses indicate
the best-fitting model, respectively. The contours show increasing level of
confidence. The inner contour indicates a $χ2 of 42.3, further contours
represent integer steps of 152, which correspond to the 1,2,3 (thick),4, . . . ,
σ confidence intervals on the shape.

a misalignment of the PA of 45◦. Our allowed models do include
these extreme misalignments of ψ = 45 at the 3σ level (Fig. 6),
but the other viewing angles are then quite restricted: at ψ = 45,
only (40◦ < ϑ < 60◦, −10◦ < ϕ < 20◦) are within the 3σ contour,
essentially disallowing the disc in either the x − y or y − z plane.
From our modelling the polar ring is the only possibility, as the
inclination of our best-fitting models lies below ϑ < 43◦, which
is exactly what is needed for the polar ring according to Statler
(2001).

3.2.3 The black hole in NGC 3379

Now that we have a handle on the shape, we investigate whether the
inferred shape affects the recovered M•. We used the six best-fitting
mass models, while changing the M• and the M/L. The results are
shown in Fig. 7. In this figure, the shape is parametrized as (0.95 −
p)/2 + q, which is completely arbitrary, but allows us to plot two-
dimensional contours and show how the χ 2 minimum is bracketed.
The best-fitting shape is independent of the chosen M•, showing
that the recovered shape does not depend on the fixed black hole
mass that was used in the previous section.

The best-fitting M• is (4 ± 1) × 108 M% and the M/L is (3.0 ±
0.2) M%/L%,I . Surprisingly, this M• estimate from the triaxial
model is more than twice as large as (1.4+2.6

−1.0) × 108 from the
edge-on axisymmetric estimate from S06. To show the quality of
the models, we show the OASIS kinematics and models with dif-
ferent M• in Fig. 8. For all the different black hole masses, the
mean-velocity field is reproduced extremely well, but the disper-
sion is only properly reproduced by the 4 × 108 M% M• model.
Our result is also significantly above the axisymmetric (near) face-
on model of Gebhardt et al. (2000, 2.0 × 108 M%) and S06. Our
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NGC3379 PREVIOUS ESTIMATES

• 2.5-4.5 e8 Long-slit 2I Magorrian et al (1998) 

• 1-2 e8      FOS stars 3I Gebhardt et al 2000

• 1-3 e8      OASIS axisymmetric Shapiro et al 2006

• 3-5 e8      OASIS triaxial van den Bosch & de Zeeuw 2010

• Changes mostly due to improved (aux.) data. 
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NGC3379 
ANISTROPY

The black hole in NGC 3379 573

Figure 14. χ2 as a function of black hole mass, marginalized over M/L,
for the two tested inclinations. 106 M! has been added to the no-black hole
model in order to include it on the log scale. The derived best-fitting black
hole masses vary by 50 per cent between the two inclinations.

Figure 15. Velocity anisotropy of NGC 3379 as a function of radius along
the angular sectors sampled in the Schwarzschild model. The dashed line
marks RBH (=0.29 arcsec) and the solid line marks Rc (=1.98 arcsec). The
galaxy is characterized by mild radial anisotropy, tending towards isotropy
within Rc. (The trends shown here are also seen in the model with " = 1 ×

103 and in the model at i = 50◦.)

rotation period, allowing the gas to settle into circular orbits in a
thin disc.

To model this disc, we can therefore use the thin-disc method of
the aforementioned authors. Briefly, from that assumption, it follows
that the gas disc is rotating solely under the combined gravitational
influence of the black hole and of a stellar potential. The velocity
contribution from the enclosed stellar mass is determined by using
the MGE surface brightness model in combination with a constant I-
band stellar M/L. The resulting disc velocity field is then projected
on to the plane of the sky by assuming an inclination idisc of the
disc. The projected line-of-sight velocities of the disc are therefore
parametrized by only three variables: MBH, the stellar M/L and idisc.

This ideal velocity field is then made more physical by account-
ing for gas velocity dispersions and for surface brightness variations
across the field. Since the mechanism responsible for the gas veloc-

ity dispersions is not understood, we fold a simple parametrization
for the dispersions into the model (Section 6.2). The resulting ve-
locity field is then weighted by the Hα surface brightness, using the
Hα + [N II] WFPC2 image (Section 6.3).

We simulate observations of the disc through the STIS instrument
to achieve the best possible match to the data. Three slits are placed
on the velocity field, with their locations described by a PA relative to
the major axis of the gas disc and by a spatial position corresponding
to the galaxy centre. There are thus six parameters in our model:
MBH, M/L, disc inclination, PA of the slits and x- and y-coordinates
of the slit positions. To measure the black hole mass in NGC 3379,
we constrain these parameters as best as possible and then construct
models with varying values of these parameters and find the best
match to the data in the χ2 sense.

In practice, we used the procedures of Cappellari et al. (2002),
which account for the finite STIS pixel size, instrumental broadening
and the STIS PSF. A model PSF was constructed using the TINYTIM

software (Krist 1993) for a monochromatic source at 6600 Å. We
then modified the method of Cappellari et al. (2002) to include
the slit effect (the velocity shift induced by the non-zero width of
the slit and its projection on to the STIS CCD) as in Barth et al.
(2001), and also to use the WFPC2 Hα + [N II] image (rather than
an analytic formula) as a description of the gas surface brightness.
The result of the model calculation is a simulated STIS observation
of the emission lines in NGC 3379, with the model emission lines
having the same spatial and spectral dimensions as the STIS data.
The kinematics of the model emission lines were extracted in exactly
the same manner as was done on the actual STIS data, with single
Gaussians being fit to the LOSVDs of individual rows.

6.2 Intrinsic velocity dispersion

The measured STIS ([N II] λ6584) kinematics shown in Fig. 7 dis-
play significant velocity dispersions, which peak at over 100 km s−1

in all three slits. Preliminary models revealed that a black hole and
instrumental effects were insufficient to account for such broaden-
ing in an unperturbed gas disc. This phenomenon has been observed
previously in similar studies in a number of galaxies (e.g. Verdoes
Kleijn et al. 2002). However, the responsible mechanism is currently
not understood; the large line widths may result either from the
non-gravitational motions of local turbulence, from a non-circular
motion analogous to stellar asymmetric drift, or from unresolved
rotation (e.g. van der Marel & van den Bosch 1998; Verdoes Kleijn,
van der Marel & Noel-Storr 2004).

In the case of the velocity dispersions being due to turbulence,
the dispersions have minimal effects on the model, which consists
of only gravitational and instrumental considerations. Under this
assumption, we assign a constant (thermal) velocity dispersion of
σ = 20 km s−1, which corresponds to a temperature of ∼5 × 104 K.

Several authors (e.g. Barth et al. 2001) have constructed models
with a similar methodology to that described here, both with and
without an ‘asymmetric drift’ term to account for the large disper-
sions. Barth et al. (2001) find that the addition of asymmetric drift
provides a much more satisfactory fit to their observed dispersions
(which peak at ∼150 km s−1) and changes their best-fitting black
hole mass by 12 per cent (Barth et al. 2001). Since our results in-
clude uncertainties much larger than this (Section 7), we do not
include this term in our models, nor do we expect this omission to
alter our results significantly.

In the case of NGC 3379, we find that the most satisfactory ex-
planation of the high central dispersions is in fact that of unre-
solved rotation (see Section 7.3). In this case, a thermal velocity
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THE ROLE OF DARK MATTER

• Models measure the enclosed 
mass, but only where the is 
information from kinematic data.

• The stellar M/L is over estimated 
of the DM is not included, which 
can lower the black hole mass

• Schulze & Gebhardt 2010 
showed that the DM only 
matter when the SOI is not well 
resolved.

No. 2, 2009 THE BLACK HOLE MASS, STELLAR M/L, AND DARK HALO IN M87 1697

Figure 6. Gravitational potential vs. radius for M87. The solid black lines are
the dynamical models from this paper that are within the 68% confidence band
of the best fit. The red noisy line is the gravitational potential as derived from
the X-ray gas emission from Churazov et al. (2008). The green solid line is
the parameterization from our models that well matches the X-ray profile (the
parameters of the matched model are 6 × 109 M", 8.0, 800 km s−1, 35 kpc for
black hole mass, M/LV , circular velocity, and core radius, respectively. The
difference in χ2 between our representation of the X-ray potential and that of
the best fit is 18. The units of the potential are as given in Churazov et al. and
all models are scaled to R = 330′′.
(A color version of this figure is available in the online journal.)

fits with NFW and logarithmic halos yield similar results has
also been found in other early-type galaxies (Thomas et al. 2005,
2007). Since the results are similar, we do not discuss results
from NFW models.

Figure 5 plots the relationships between the four parameters
for the models. The parameter space is much larger than shown
in this figure since we only focus on the region around the best fit.
In each panel, we include all models that are in that parameter
range, irregardless of their χ2 values. The color and symbol
size, however, indicate those models that are within the 68%
(∆χ2 = 1 after marginalizing over the other three parameters)
and the 95% (∆χ2 = 4) confidence bands of the best-fitted
model. The idea is to explore any correlations/degeneracies
among the parameters. There is not an obvious correlation
between M/L and black hole mass in the plotted region around
the minimum χ2. However, increasing the confidence band to
95% shows a correlation. This degeneracy is expected. Since
the dynamical models only fit for the enclosed mass, as the
contribution from the stars is increased in the central region, the
contribution from the black hole has to decrease. An obvious
degeneracy within the 68% band is that between M/L and
scale radius of the halo. As the scale radius is decreased, for a
given circular velocity, the contribution of the dark matter in the
central regions is increased, thereby decreasing the contribution
from the stars. These degeneracies are the essential reason why
the dark halo properties affect the inferred black hole mass in
M87. Beyond the plotting region, there are no points within
the 68% confidence region, which allows us to set reasonable
uncertainties on the parameters.

4.2. Gravitational Potential

Figure 6 plots the gravitational potential. The black lines
are the potentials of the models that are within the 68% limit

Figure 7. Mass profile for M87. The black lines represent the models that are
within the 68% confidence band of the best fit (as in Figure 6). The green line
is the mass profile derived from our representation of the X-ray gravitational
potential (i.e., the green line in Figure 6). The red line is the average contribution
from the stars, where we use the light profile 6.3 times that in Figure 1 (the
best-fitted M/L). The mass profiles for the dynamical model show a smooth
transition from 30 to 1000′′, whereas the X-ray profile shows a kink.
(A color version of this figure is available in the online journal.)

(∆χ2 = 1 for the marginalized parameters). We also plot the
gravitational potential as inferred from the X-ray profile as
presented in Churazov et al. (2008). These have all been scaled
to be zero at 330′′ as in Churazov et al. The red line is the model
from Churazov et al. and it is clearly dissimilar from the best-
fit potential derived from the stellar and cluster dynamics. The
green line is one of the models we used which is close to the
gravitational potential from the X-rays; we use that model to
represent the X-ray profile in subsequent analysis. Between the
green line and the best-fitted model, ∆χ2 = 18, which implies
the potential derived from the X-ray is significantly poorer fit
to the kinematics. We find a potential that is deeper than the
X-ray derived potential. Churazov et al. (2008) explore a shock
model for the X-rays in an attempt to explain the wiggles seen in
the X-ray potential, but this model would not explain the large
offset. Additional galaxies with potentials derived from both
stars and X-rays will be important to study. This difference in
the potential may be specific to M87.

4.3. Enclosed Mass and M/L Ratio

Figure 7 plots the enclosed mass. The black lines represent the
models that are within the 68% confidence limit. The enclosed
mass flattens in the center due to the black hole and rises linearly
due to the dark halo. The red line is the stellar contribution
assuming M/L = 5.0. The green line is the enclosed mass from
our model which best matches the gravitational potential derived
from the X-rays. In the potential derived from the X-rays (green
line in Figure 6), there is a transition around 300′′ from the steep
profile beyond that to a shallow profile inside of that radius.
This transition manifests itself as a wiggle in the enclosed mass
profile around 200–300′′. The enclosed mass derived from the
stellar kinematics instead show a very smooth gradient from
a few arcseconds out to 1000′′. If enclosed mass profiles are
relatively smooth, as the one derived here, it will be fairly
easy to constrain that profile using a nonparametric approach.

M87

Gebhardt & Thomas 2007
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Figure 6. Gravitational potential vs. radius for M87. The solid black lines are
the dynamical models from this paper that are within the 68% confidence band
of the best fit. The red noisy line is the gravitational potential as derived from
the X-ray gas emission from Churazov et al. (2008). The green solid line is
the parameterization from our models that well matches the X-ray profile (the
parameters of the matched model are 6 × 109 M", 8.0, 800 km s−1, 35 kpc for
black hole mass, M/LV , circular velocity, and core radius, respectively. The
difference in χ2 between our representation of the X-ray potential and that of
the best fit is 18. The units of the potential are as given in Churazov et al. and
all models are scaled to R = 330′′.
(A color version of this figure is available in the online journal.)

fits with NFW and logarithmic halos yield similar results has
also been found in other early-type galaxies (Thomas et al. 2005,
2007). Since the results are similar, we do not discuss results
from NFW models.

Figure 5 plots the relationships between the four parameters
for the models. The parameter space is much larger than shown
in this figure since we only focus on the region around the best fit.
In each panel, we include all models that are in that parameter
range, irregardless of their χ2 values. The color and symbol
size, however, indicate those models that are within the 68%
(∆χ2 = 1 after marginalizing over the other three parameters)
and the 95% (∆χ2 = 4) confidence bands of the best-fitted
model. The idea is to explore any correlations/degeneracies
among the parameters. There is not an obvious correlation
between M/L and black hole mass in the plotted region around
the minimum χ2. However, increasing the confidence band to
95% shows a correlation. This degeneracy is expected. Since
the dynamical models only fit for the enclosed mass, as the
contribution from the stars is increased in the central region, the
contribution from the black hole has to decrease. An obvious
degeneracy within the 68% band is that between M/L and
scale radius of the halo. As the scale radius is decreased, for a
given circular velocity, the contribution of the dark matter in the
central regions is increased, thereby decreasing the contribution
from the stars. These degeneracies are the essential reason why
the dark halo properties affect the inferred black hole mass in
M87. Beyond the plotting region, there are no points within
the 68% confidence region, which allows us to set reasonable
uncertainties on the parameters.

4.2. Gravitational Potential

Figure 6 plots the gravitational potential. The black lines
are the potentials of the models that are within the 68% limit

Figure 7. Mass profile for M87. The black lines represent the models that are
within the 68% confidence band of the best fit (as in Figure 6). The green line
is the mass profile derived from our representation of the X-ray gravitational
potential (i.e., the green line in Figure 6). The red line is the average contribution
from the stars, where we use the light profile 6.3 times that in Figure 1 (the
best-fitted M/L). The mass profiles for the dynamical model show a smooth
transition from 30 to 1000′′, whereas the X-ray profile shows a kink.
(A color version of this figure is available in the online journal.)

(∆χ2 = 1 for the marginalized parameters). We also plot the
gravitational potential as inferred from the X-ray profile as
presented in Churazov et al. (2008). These have all been scaled
to be zero at 330′′ as in Churazov et al. The red line is the model
from Churazov et al. and it is clearly dissimilar from the best-
fit potential derived from the stellar and cluster dynamics. The
green line is one of the models we used which is close to the
gravitational potential from the X-rays; we use that model to
represent the X-ray profile in subsequent analysis. Between the
green line and the best-fitted model, ∆χ2 = 18, which implies
the potential derived from the X-ray is significantly poorer fit
to the kinematics. We find a potential that is deeper than the
X-ray derived potential. Churazov et al. (2008) explore a shock
model for the X-rays in an attempt to explain the wiggles seen in
the X-ray potential, but this model would not explain the large
offset. Additional galaxies with potentials derived from both
stars and X-rays will be important to study. This difference in
the potential may be specific to M87.

4.3. Enclosed Mass and M/L Ratio

Figure 7 plots the enclosed mass. The black lines represent the
models that are within the 68% confidence limit. The enclosed
mass flattens in the center due to the black hole and rises linearly
due to the dark halo. The red line is the stellar contribution
assuming M/L = 5.0. The green line is the enclosed mass from
our model which best matches the gravitational potential derived
from the X-rays. In the potential derived from the X-rays (green
line in Figure 6), there is a transition around 300′′ from the steep
profile beyond that to a shallow profile inside of that radius.
This transition manifests itself as a wiggle in the enclosed mass
profile around 200–300′′. The enclosed mass derived from the
stellar kinematics instead show a very smooth gradient from
a few arcseconds out to 1000′′. If enclosed mass profiles are
relatively smooth, as the one derived here, it will be fairly
easy to constrain that profile using a nonparametric approach.

DYNAMICAL MODEL 
MEASURE ENCLOSED MASS

•Models measure the 
enclosed mass, but only 
where the is information 
from kinematic data.

•M87 black hole mass 
changed: Gebhardt & 
Thomas 2007 and  
Gebhardt et al. 2010 due to 
inclusion of central AO data.

M87

Gebhardt & Thomas 2007
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MEASUREMENT TECHNIQUES
Milky Way Individual Keplerian Orbits 1
MegaMaser  VLBI of H2O Maser Discs 8

Gas Disc Spectroscopy + warped thin disc 15
Stars Spectroscopy + dynamical Model 40
AGN Reverberation mapping/single Epoch 40+

• Different methods work on different galaxies

• Only a couple of cross calibrations exist

• And within the stellar dyn. the assumptions and uncertainties are 
measured in different ways by different groups (e.g. LOSVDs vs. GH) 
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• MANY REQUIREMENTS FOR 
DYNAMICAL ESTIMATES:

• Resolve the Sphere-of-influence

Thus HST/STIS or AO. And few 
available targets

• Plus large scale kinematics and high 
resolution photometry and large 
scale photometry for stellar mass 
model

 

 4 

The central accretion disks subtend only a few tenths of an arcsecond even at distances of only a 
few Mpc, and their projected angular sizes decrease rapidly below 0.1” beyond redshifts of a few 
tenths, thereby necessitating the use of indirect mass estimates. A factor of 10 increase in the 
angular resolution available in the optical/NIR regime would enable such disks to be resolved to 
out to at least z~0.5-1, and probably to higher redshifts as well, since the angular diameter scale 
(kpc/”) changes by no more than ~30% from z~0.5 to z~5. Surface brightness diming then 
becomes the most limiting effect on how far out in redshift one can make such an observation 

An example of the observational parameter space probed by direct dynamical mass 
measurements as a function of distance is shown in Figure 2 (Batcheldor 2008). To accurately 
model the mass of a SMBH, we are required to resolve the its sphere of influence, rh= GM/!2, 
where M is the mass of the black hole and ! is the stellar velocity dispersion (Peebles 1972). 
Assuming all SMBHs follow the relationship between M and !, we can plot rh within the M-! 
plane. In addition, we can determine the ability of a diffraction-limited telescope to resolve rh at a 
specific distance and wavelength. The optimal spectral features to measure can be determined 

from the relevant gas and stellar dynamical models. In the optical these are 5200! (Mgb), 6563! 

(H alpha) and 8500! (CaT). In Figure 2 we show the ability of HST as well as a hypothetical 
16m diffraction-limited telescope to resolve rh given several key distances. It can be seen that 
with HST, even very massive black holes (above ~109 M

!
) can only be measured up to 

~160Mpc. On the other hand, increasing the resolution from ~0.1” to ~0.01” can not only enable 
the mass measurement of such systems to ~1 Gpc (z ~ 0.5) but also therefore up to much higher 
redshifts, since the angular size scale changes very slowly above this redshift with current 
cosmological parameters (with H0=71, omegaM=0.27, and omegavac=0.73, at z=0.5, 1, 5, the 
angular scales corresponding to 0.01” are 60, 80, and 65 pc respectively). 

  
Figure 2 (Batcheldor 2008). These plots show the M- ! relation (represented by a solid 
line) together with a set of dashed lines corresponding to the maximum distance at 
which the mass can be measured for a black hole of a given mass. The left-hand panel 
shows this for HST, while the right-hand panel shows the corresponding distances for a 
diffraction-limited telescope with ~0.01” resolution. (Left): for HST, even a ~109 M

!
 

black hole can only be measured by HST up to ~160 Mpc. (Right) for a ~0.01” PSF, the 
mass of such sources can be measured up to ~1 Gpc (z~0.5), and hence at much larger 
distances, since the angular size scale changes relatively slowly above this redshift. 

 
Based on the typical size scales of gas disks around nearby SMBHs in the local universe, a 
spatial resolution of at least 100 pc is required to be able to resolve the disk sufficiently well to 

WHY ARE THERE FEW BLACK HOLE MASS 
MEASUREMENTS?

R
soi

=
GM•
D�2

/ �2.2

D

Batcheldor  
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• MANY REQUIREMENTS FOR 
DYNAMICAL ESTIMATES:

• Resolve the Sphere-of-influence

Thus HST/STIS or AO. And few 
available targets

• Plus large scale kinematics and high 
resolution photometry and large 
scale photometry for stellar mass 
model

WHY ARE THERE FEW BLACK HOLE MASS 
MEASUREMENTS?

Large scale photometry
High resolution photometry

Large scale

Small scale kinematics

R
soi

=
GM•
D�2

/ �2.2

D

The black hole in NGC 3379 563

Figure 1. First six Gauss–Hermite moments of the LOSVD in NGC 3379. Left-hand panels show the inner 10 arcsec2 of the SAURON field, with the OASIS
field overlaid. In these plots, north is up and east is to the left-hand side. Right-hand panels show the LOSVD moments as seen through a 1-arcsec slit placed
along the galaxy’s major axis (PA = 70◦) as observed with SAURON (black) and OASIS (blue). Red, magenta, cyan and green points indicate the long-slit
major axis data of Statler & Smecker-Hane (1999); Gebhardt et al. (2000b); Halliday et al. (2001) and Samurović & Danziger (2005), respectively. The small
OASIS PSF allows the data to probe the central rise in velocity dispersion with more detail than in previous measurements or in the SAURON data.

C© 2006 The Authors. Journal compilation C© 2006 RAS, MNRAS 370, 559–579
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\

HET OBSERVATIONS
• Long slit spectra with the 

Marcario Low Resolution 
Spectrograph

• 4200-7400 AA, 180km/s 
resolution, 2”x2.5’ slit

• 367 galaxies observed

• Distances are 40~140 Mpc

• Effectively probing the most 
massive nearby galaxies

• ~100 more queued
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GATEWAY TO MORE BLACK HOLE MASSES

• Survey has probed nearly all likely candidates. 
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• Survey has probed nearly all likely candidates. 

• 69 new targets of which 22 with black holes 
bigger than 10^9 Msun
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• Survey has probed nearly all likely candidates. 

• 69 new targets of which 22 with black holes 
bigger than 10^9 Msun
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Including intrinsic scatter

GATEWAY TO MORE BLACK HOLE MASSES
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CONCLUSIONS & QUESTIONS
• Dynamical models are a good way to measure masses of black hole, but 

also measure other properties of a galaxy, like M/L
• But they require combining several datasets per galaxy
• SMBH masses have changed, but this is mostly due to improvement of 

data.
• long slit kinematics of nearly all good candidates now exists

• Going forward with the dynamical SMBH mass measurements is it more 
important to a) do galaxies with extreme properties b) add more 
consistency c) do comparisons with other methods 

• What is the physical interpretation of empirical quantities in the scaling 
relations (sigma_e)

• Do black holes with a mass of more than 10^10 Msun exist? And if yes, 
in what nearby galaxy might we expect to find one?
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