The Dark Energy Survey and primordial non-Gaussianity

Carlos Cunha
University of Michigan
May 14, 2011
The Dark Energy Survey

- Study Dark Energy using 4 complementary techniques:
 I. Cluster Counts
 II. Weak Lensing
 III. Baryon Acoustic Oscillations
 IV. Supernovae

- Two multiband surveys:
 Main: 5000 deg2 ≈ 5 (h$^{-1}$Gpc)3
 300 million galaxies
 g, r, i, z, Y to 24th mag
 SNe: 15 deg2 repeat

- Build new 3 deg2 FoV camera and Data management system in Blanco 4-m telescope
 Survey 2012-2017 (525 nights)
 Camera available for community use the rest of the time (70%)
The DES Collaboration

Fermilab
University of Illinois at Urbana-Champaign/NCSA
University of Chicago
Lawrence Berkeley National Lab
NOAO/CTIO
DES Spain Consortium
DES United Kingdom Consortium
University of Michigan
Ohio State University
University of Pennsylvania
DES Brazil Consortium
Argonne National Laboratory
SLAC-Stanford-Santa Cruz Consortium
Universitats-Sternwarte Munchen
Texas A&M University

Over 120 members plus students & postdocs

Funding: DOE, NSF, STFC, MEC, FINEP, Excellence Cluster, collaborating institutions
Photometric surveys for theorists

- Collect light from galaxies in several broad-band filters in optical and near-IR.
- grizY (DES) + JK (Vista)
- Use flux in each filter to determine:
 - type: star/gal./QSO
 - gal. type: spiral, elliptical, ...
 - (photometric) redshift
- Also have angular and shape information

Terminology:

magnitude = A \(-\log(\text{flux})\)
color = magnitude - magnitude
Observational issues for f_{nl} measurement

- Artificial correlations can mimic f_{nl}. For $f_{\text{NL}}^{\text{local}}$, separations >100 Mpc (several degrees) are crucial.

- Artificial correlations can be due to:
 - photometric calibration
 - photometric redshifts
 - star/galaxy separation

 More relevant for galaxies than clusters

- Clusters have own selection issues (more later ... maybe)
DES Photometric Calibration

- Deal with: telescope/camera, atmosphere, seasons, Moon, Milky Way.
- Multiple overlapping tilings with varying orientations + standard stars + ...
- DES: 2 survey tilings/filter/year
- Need contiguous area that overlaps existing surveys.

DES Goal: 1% photometry over all survey area (BaO requirement is 2%).
• Combination DES (optical)+Vista (IR) yields robust photo-zs.
• LRGs have even better scatter.
• Errors need to be modeled carefully, but f_{NL} requirements weaker than WL.
• For clusters $\sigma_z=0.02$.

Rough numbers:
$\Delta z=0.1 \Rightarrow \Delta d_c = 1-2\times10^2 h^{-1} \text{ Mpc over survey redshift range.}$

$100 \text{ Mpc} \approx 3 \text{ deg at } z=1.$
• Distribution of stars is not random. Pronounced variation with latitude.

• Classification using colors (magnitudes)

• BAO requirement:
 – probabilities accurate to 1%
 – stellar contamination and distribution of misclassified galaxies smaller than 9% over all survey (< 2% on scales < 4 degree)

• Good enough for f_{NL}?
f_{NL} constraints with DES clusters
Cluster counts-in-cells and sample covariance

About 1.7×10^5 clusters expected
($M_{\text{th}} = 10^{13.7} \, h^{-1} \, M_{\text{sun}}$)

Cunha, Huterer, Dore 2010
Many cluster systematics under control

<table>
<thead>
<tr>
<th>Nuisance parameters</th>
<th>M_{obs}</th>
<th>$\sigma(\Omega_{DE})$</th>
<th>$\sigma(w)$</th>
<th>$\sigma(f_{NL})$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Known</td>
<td>Known</td>
<td>0.016</td>
<td>0.041</td>
<td>6.49</td>
</tr>
<tr>
<td>Marginalized</td>
<td>Known</td>
<td>0.021</td>
<td>0.053</td>
<td>6.69</td>
</tr>
<tr>
<td>Known</td>
<td>Marginalized</td>
<td>0.106</td>
<td>0.36</td>
<td>9.39</td>
</tr>
<tr>
<td>Marginalizeda</td>
<td>Marginalizeda</td>
<td>0.23a</td>
<td>0.77a</td>
<td>18.8a</td>
</tr>
</tbody>
</table>

Mass calibration with:
- Weak Lensing
- SZ clusters (South Pole Telescope)
- IR clusters (Spitzer)
- X-Ray clusters

Cunha, Huterer, Dore 2010

With reasonable priors can get $\sigma(f_{NL})$ of a few.
Clusters vs. Galaxies

- Galaxy catalogs will be much bigger but,
- It’s the large halo-halo separations that have the signal.
- Clusters are more directly related to the haloes.
- Clusters can be binned by mass.
- Combination of different tracers potentially very powerful. See N. Hamaus’ talk.
Conclusions

• DES should place tight constraints (better than Planck) using several complementary strategies (WL, galaxies, clusters, QSO’s).

• Cross-check between techniques will be key to controlling systematics.

• Major focus for calibration of photometric surveys has been on BaO and WL constraints for Dark Energy. Need to check what’s happening on larger scales.