Measuring f_{NL}^{loc} may not rule out all single-field inflation...

Slow-roll inflation using standard, Maldacena-like calculation

Non-vacuum initial state

Enhanced local bispectrum ($k_3 \ll k_1 \approx k_3$):

$$B_{\text{non-BD}} \propto \frac{k_1}{k_3} B_{\text{loc}}$$

arXiv: 1104.0244
Measuring f_{NL}^{loc} may not rule out all single-field inflation…

Slow-roll inflation

using standard, Maldacena-like calculation

Non-vacuum initial state
(...previous calculations looked for folded shape)

Enhanced local bispectrum
$(k_3 \ll k_1 \approx k_3)$:

$$B_{\text{non-BD}} \propto \frac{k_1}{k_3} B^{\text{loc}}$$

arXiv: 1104.0244
Enhanced bispectrum from slow-roll inflation with a non-vacuum initial state

What would Planck measure?
• We use the transfer function and 2D projection.
Enhanced bispectrum from slow-roll inflation with a non-vacuum initial state

What would Planck measure?

- We use the transfer function and 2D projection.

\[N_k = \text{occupation number of mode with momentum } k. \]

- We find that, for \(N_k = \mathcal{O}(1), \)

\[f^\text{measured}_{NL} \gg \frac{5}{12} (1 - n_s) \approx 0.01 \]

Jonathan Ganc
University of Texas, Austin
5/14/2011
f_{NL} is enhanced! What are the implications?

Is this f_{NL} observable?

arXiv: 1104.0244
f_{NL} is enhanced! What are the implications?

Is this f_{NL} observable?

• It depends on the initial state chosen

* * *

Jonathan Ganc
University of Texas, Austin
5/14/2011
f_{NL} is enhanced! What are the implications?

Is this f_{NL} observable?
- It depends on the initial state chosen

Does this violate the consistency relation?

Jonathan Ganc
University of Texas, Austin
5/14/2011
f_{NL} is enhanced! What are the implications?

Is this f_{NL} observable?
- It depends on the initial state chosen

Does this violate the consistency relation?
- Not exactly, though it points out some potential weaknesses.

arXiv: 1104.0244
f_{NL} is enhanced! What are the implications?

Is this f_{NL} observable?
- It depends on the initial state chosen

Does this violate the consistency relation?
- Not exactly, though it points out some potential weaknesses.

Come and ask me for specifics!

Jonathan Ganc
University of Texas, Austin
5/14/2011