Primordial non-Gaussianity and the large-scale structure of the universe

Cristiano Porciani
Identity crisis

...you theorists...

...you observers...
The talk of a phenomenologist

• There are lots of ideas regarding the early universe and the generation of primordial non-Gaussianity (PNG)

• Many experimental efforts are being developed/planned mainly driven by the quest for dark energy

• What will they be able to say about PNG?
The CMB future

- The Planck satellite has been launched on May 14 2009 and is currently acquiring data

- For PNG of the local type, the expected Cramér-Rao limit is $\Delta f_{NL} \approx 5$ from temperature anisotropies (Komatsu & Spergel 2001)

- This reduces to $\Delta f_{NL} \approx 3$ from the joint analysis of temperature and polarization maps (Yadav, Komatsu & Wandelt 2007)
Are there other probes of primordial non-Gaussianity beyond the CMB?

- Abundance of dark-matter halos
- Abundance of voids
- Topology of the LSS
- Clustering of the matter distribution
- Clustering of dark-matter halos
The large-scale structure

$P_{\text{NL}} = 0$

$250 \, h^{-1} \, \text{Mpc}$

$P_{\text{NL}} = 750$

Pillepich, CP & Hahn 2010
Zooming in

$160 \, h^{-1} \text{Mpc}$

$f_{NL} = 0$

$f_{NL} = 750$
A massive galaxy cluster

$f_{NL} = 0$

$f_{NL} = 750$

$40 \, h^{-1} \text{Mpc}$
Matter power spectrum (large scales)

Good agreement with perturbation theory on large scales

Taruya, Koyama & Matsubara 2008
Bartolo et al. 2010 (TRG, see S. Matarrese talk)
Matter power spectrum (small scales)

Halo model can predict it to 10-15% accuracy

Giannantonio, CP et al. 2011
Fedeli & Moscardini 2010
Halo mass function

- A positive local f_{NL} enhances the formation of most massive halos at the expenses of the less massive ones.

- Excursion set + path integral (Maggiore & Riotto 2010)

- Fitting formulae (Pillepich, Porciani & Hahn 2010)
Halo mass function

- Models have been tested against N-body simulations (Grossi et al. 2007, 2009, Desjacques et al. 2009, Pillepich et al. 2010, Giannantonio & Porciani 2010, Wagner et al. 2010)

- Good agreement for the ratio between the mass functions in Gaussian and non-Gaussian models

- Model parameters need to be fine tuned depending on the adopted definition of dark-matter halo. What is \(q \) for galaxies?

Desjacques & Seljak 2010
Halo mass function

But you need to make sure that also your Gaussian mass function is accurate!

Giannantonio & Porciani 2010
Non-Gaussianity from galaxy clustering?

- It would be important to cross-check CMB results against probes with different systematics.

- What about the large-scale structure? e.g. the galaxy bispectrum?

- Unfortunately the non-linear growth of perturbations superimposes a much stronger non-Gaussian signal onto the primordial one that is then difficult to disentangle and recover.

Back to life in 2008

- The large-scale clustering of collapsed objects (galaxies, galaxy clusters) as measured by the power spectrum depends linearly on f_{NL}.

- An approximated model based on linear theory captures all the relevant physics

![Graph showing P(k) and b(k,fNL)/b(k,0)](Dalal et al. 2008)
Do halos form at linear density peaks?

Ludlow & Porciani 2010a
(do they form at peaks?)

Ludlow & Porciani 2010b
(do they collapse according to the ellipsoidal model?
Do all peaks above threshold make halos?)
Scale-dependent bias
(to 1-loop in PT)
Scale-dependent bias

\[b_{\text{eff}}(k, f_{NL}) = \frac{P_{hm}(k, f_{NL})}{P_{mn}(k, f_{NL})} \]

\[\Delta b(k, f_{NL}) = b_{\text{eff}}(k, f_{NL}) - b_{\text{eff}}(k, 0) \]

\[\Delta b(k, f_{NL}) = b_{10}(f_{NL}) - b_{10}(0) + 2 \frac{f_{NL}}{\alpha(k)} \delta_c [b_{10}(f_{NL}) - 1] \]

\[\alpha(k) = \frac{2c^2 k^2 T(k) D(z) g(0)}{3 \Omega_m H_0^2 g(\infty)} \]

For other shapes of PNG see Schmidt & Kamionkowski (2010) and F. Schmidt talk.
A non-local biasing scheme

• Using the peak-background split, we have shown that, in general (Giannantonio & Porciani 2010):

$$\delta_h(x) = F[\delta_m(x), \phi(x), [\nabla \phi(x)]^2]$$

• Since the potential and the density field are linked by the Poisson equation, this generates a non-local biasing scheme in terms of the mass density

• When $f_{NL} \neq 0$, this is not compatible with the standard local, deterministic biasing scheme by Fry & Gaztañaga (1993)
The bias expansion

For galaxy and cluster sized halos, we can expand the halo overdensity as:

\[
\delta_h(x) = b_0 + b_{10} \delta + b_{01} \varphi + \\
\frac{1}{2!} \left(b_{20} \delta^2 + 2 b_{11} \delta \varphi + b_{02} \varphi^2 \right) + \\
\frac{1}{3!} \left(b_{30} \delta^3 + 3 b_{21} \delta^2 \varphi + 3 b_{12} \delta \varphi^2 + b_{03} \varphi^3 \right),
\]

This term generates the leading order scale-dependence in the bias

and we provide explicit expressions for the bias coefficients as a function of \(f_{NL} \) and \(g_{NL} \). (see also talk by K. Smith)

All terms including the Gaussian potential vanish when \(f_{NL} = 0 \)
and the bias reduces to the model by Fry & Gaztañaga (1993).
Halo-matter cross spectrum

Solid lines: perturbative calculations (up to second next to leading order) by Giannantonio & Porciani 2010.

Points with errorbars: N-body simulations by Pillepich, Porciani & Hahn 2010.

The model is not a fit to the data!
Competitive with CMB!

• Fitting the best datasets for galaxy clustering with this model, gives:

\[-29 < f_{\text{NL}} < 70\] at 95% CL

• This is competitive with the WMAP 5yr results!

• Combined CMB+LSS:

\[0 < f_{\text{NL}} < 69\]

For a more recent analysis see Xia et al. 2011 and S. Matarrese talk
Generalisation to other shapes

• Local:
 \[\Delta b \sim 1/k^2 \text{ as } k \to 0 \]
 Schmidt & Kamionkowski 2010
 Wagner et al. 2010

• Orthogonal:
 \[\Delta b \sim 1/k \]

• Equilateral:
 \[\Delta b \sim \text{constant} \]
From theory to observations

<table>
<thead>
<tr>
<th>Observable</th>
<th>Experiment</th>
<th>Systematics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Matter power spectrum</td>
<td>Weak lensing surveys</td>
<td>Dynamic non-linearities, intrinsic alignments, effect of baryons</td>
</tr>
<tr>
<td>Galaxy power spectrum or bispectrum</td>
<td>Galaxy redshift/photometric surveys</td>
<td>Galaxy biasing, non-linearities, shot noise, redshift-space distortions</td>
</tr>
<tr>
<td>Cluster abundance</td>
<td>X-ray, SZ surveys</td>
<td>Mapping observables to masses, accurate models for the mass function, effect of baryons</td>
</tr>
<tr>
<td>Void abundance</td>
<td>Galaxy redshift surveys</td>
<td>Galaxy biasing, definitions</td>
</tr>
<tr>
<td>Topology of LSS</td>
<td>Galaxy redshift surveys</td>
<td>Galaxy biasing, definitions</td>
</tr>
</tbody>
</table>
eROSITA

extended Roentgen Survey with an Imaging Telescope Array

• Primary instrument onboard the Russian Spectrum-Roentgen-Gamma satellite (SRG)

• German-Russian mission. Launched from Baikonur in 2012 (leased by Kazakhstan to Russia)

• L2 orbit

• First all-sky imaging survey in the medium energy X-ray band up to 10 keV with unprecedented spectra and angular resolution

• 7 Wolter-1 mirror modules (containing 54 shells each), special detectors
eROSITA science goals

- Detect the hot intergalactic medium of 10^5 galaxy clusters and groups for studies of structure formation and cosmology
- Detect all obscured accreting black holes in nearby galaxies
- Study galactic X-ray sources

Pillepich, CP & Reiprich 2011
Forecasted marginal constraints

(Fisher matrix with many cosmo + nuisance ICM parameters)

<table>
<thead>
<tr>
<th></th>
<th>f_{NL}</th>
<th>n_s</th>
<th>σ_8</th>
</tr>
</thead>
<tbody>
<tr>
<td>I: Counts</td>
<td>7600</td>
<td>2.3</td>
<td>1.6</td>
</tr>
<tr>
<td>II: Counts +photoz</td>
<td>248</td>
<td>0.402</td>
<td>0.084</td>
</tr>
<tr>
<td>III: Angular Clustering</td>
<td>22</td>
<td>0.378</td>
<td>0.136</td>
</tr>
<tr>
<td>IV: Tomography</td>
<td>6.6</td>
<td>0.185</td>
<td>0.135</td>
</tr>
<tr>
<td>I + III</td>
<td>21</td>
<td>0.288</td>
<td>0.071</td>
</tr>
<tr>
<td>II+IV</td>
<td>6.1</td>
<td>0.071</td>
<td>0.034</td>
</tr>
<tr>
<td>I+III+Planck C_i</td>
<td>18</td>
<td>0.022</td>
<td>0.006</td>
</tr>
<tr>
<td>II + IV + Planck C_i</td>
<td>5.1</td>
<td>0.006</td>
<td>0.002</td>
</tr>
</tbody>
</table>

PNG of the local type

Pillepich, CP & Reiprich 2011
The EUCLID mission

- M-class mission within the Cosmic Vision program of the European Space Agency

- “High-precision survey mission to map the geometry of the dark universe”

- Now in the competitive Definition Phase, launch expected in 2018

- >200 people, 30 Institutions, 7 countries
The EUCLID concept

The EUCLID mission is being optimized for two complementary cosmological probes

- Weak gravitational lensing
- Baryonic acoustic oscillations
- Full extragalactic sky survey with 1.2m telescope at L2
- Additional probes: galaxy clusters, redshift-space distortions, integrated Sachs-Wolfe effect
- Legacy science for a wide range of areas in astronomy
EUCLID imaging surveys

Wide survey (20,000 deg²)

- Galaxy shape measurements in the visible band to $R_{IZ AB} < 24.5$ (10σ) yielding 30-40 resolved galaxies/arcmin² with a median redshift of 0.9
- Near-infrared photometry yielding photometric redshift errors of 0.03-0.05 (1+z) with ground-based complements (DES, PanStarrs)

Deep survey (40 deg²):

- 2 mag deeper for both visible and NIR data
EUCLID spectroscopic survey

- 20,000 deg2 in 5 yr
- Slitless spectroscopy with spectral resolution $R=500$ (1-2 μm) in the near infrared
- $F_{H\alpha}>4\times10^{-16}$ erg s$^{-1}$ cm$^{-2}$ (star-forming galaxies)
- $\sigma_z<0.001(1+z)$
- Spectroscopic completeness >0.35 for a total of 70 million galaxy redshifts
Impact of EUCLID on PNG

Giannantonio, Porciani et al. 2011

PNG of the local type
Impact of EUCLID on PNG

Giannantonio, Porciani et al. 2011 (preliminary)

<table>
<thead>
<tr>
<th>Probe</th>
<th>Δf_{NL} Local</th>
<th>Δf_{NL} equilateral</th>
<th>Δf_{NL} orthogonal</th>
</tr>
</thead>
<tbody>
<tr>
<td>EUCLID + Planck</td>
<td>EUCLID + Planck</td>
<td>EUCLID + Planck</td>
<td></td>
</tr>
<tr>
<td>Weak lensing</td>
<td>39</td>
<td>19</td>
<td>18</td>
</tr>
<tr>
<td></td>
<td></td>
<td>9.2</td>
<td>5.2</td>
</tr>
<tr>
<td>2D clustering</td>
<td>1.9</td>
<td>1.8</td>
<td>140</td>
</tr>
<tr>
<td></td>
<td></td>
<td>29</td>
<td>35</td>
</tr>
<tr>
<td>3D clustering</td>
<td>2.9</td>
<td>2.8</td>
<td>190</td>
</tr>
<tr>
<td></td>
<td></td>
<td>34</td>
<td>40</td>
</tr>
<tr>
<td>Combined</td>
<td>1.4</td>
<td>1.3</td>
<td>6.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td>4.4</td>
<td>2.1</td>
</tr>
</tbody>
</table>

For the simplest scale-dependent models (in the local case): $\Delta n_{f_{nl}}=0.05$ (Interesting!!!! See C. Byrnes and S. Shandera talks)

1. This is only from 2-point statistics!!!
2. Fiducial model assumes $f_{NL}=0$ (slightly worse forecasts for the alternative case)
3. In the non-local cases signal comes mainly from lensing, we need to test the halo model is accurate enough against N-body simulations.
Next frontier: the dark side of the Moon!

- Constraints from the 21-cm background in the dark ages (bispectrum)

- Tomography of HI distribution between $30 < z < 100$ would give: $\Delta f_{NL} \ll 1$

- This would require better modeling of GR and second order effects

Credit: NASA

Pillepich, CP & Matarrese (2007)
Cooray (2007)
Conclusions

• Primordial non-Gaussianity is fertile land for both theorists and observers.

• Near future missions will be able to constrain f_{NL} with a statistical error of ~ 3 and $n_{f_{NL}}$ to 0.05.

• To make this possible we have to work hard on the systematics, especially modeling galaxy biasing and dynamical non-linearities.