Halo mass function with f_{NL}, g_{NL} and τ_{NL}

Marilena LoVerde (Institute for Advanced Study) with Kendrick Smith (Princeton University)

arXiv:1102.1439

ML is grateful for support from the Friends of the Institute for Advanced Study
Outline

- Three simple local models: f_{NL}, g_{NL}, T_{NL}
- Primordial non-Gaussianity in the halo mass function
- Analytic estimates & N-body results
- Conclusions
\[\Phi(x) = \Phi_G(x) + f_{NL}(\Phi^2(x) - \langle \Phi^2 \rangle) \]

- **Gaussian** random field, \(\Phi \)
- **same variance**, **positive skewness**
- **same variance**, **negative skewness**

(\(\Phi = \) primordial gravitational potential)

- **skewness** \(\langle \Phi^3 \rangle \sim f_{NL} \langle \Phi_G^2 \rangle^2 \)
- **kurtosis** \(\langle \Phi^4 \rangle_c \sim f_{NL}^2 \langle \Phi_G^2 \rangle^3 \)

Salopek and Bond 1990; Gangui, Lucchin, Matarrese, Mollerach 1994; Komatsu and Spergel 2001

\(-10 < f_{NL} < 74\)

WMAP, Komatsu et al 2010
What about $\Phi(x) = \Phi_G(x) + g_{NL} (\Phi_G(x)^3 - 3\Phi_G(x)\langle\Phi_G^2\rangle)$?

$g_{NL} > 0$: positive kurtosis

$g_{NL} < 0$: negative kurtosis

Current constraints:

$-12 < g_{NL}/10^5 < 16$

(WMAP, Fergusson et al 2010)

(Okamoto and Hu 2002; Enqvist and Nurmi 2005)
\[\Phi(x) = \varphi_{G,i}(x) + \varphi_{G,c}(x) + \tilde{f}_{NL} (\varphi_{G,c}^2(x) - \langle \varphi_{G,c}^2 \rangle) \]

Gaussian

- **Negative skewness and usual kurtosis:** \(\tau_{NL} = (6/5f_{NL})^2 \)
- **Positive skewness and larger kurtosis:** \(\tau_{NL} > (6/5f_{NL})^2 \)

Probability

\[\Phi^3 \sim f_{NL} \langle \Phi^2 \rangle^2 \]

\[\langle \Phi^4 \rangle_c \sim \tau_{NL} \langle \Phi^2 \rangle^3 \]

Current constraints:

\[-6000 < \tau_{NL} < 33,000 \]

(WMAP, Smidt et al 2010)

(Lyth and Wands 2002; Ichikawa, Suyama, Takahishi, Yamaguchi (2008); Tseliakhovich, Hirata, Slosar 2010; Shandera, Dalal, Huterer 2010)
A Signature: more/fewer massive halos

dark matter halos form in peaks of the density field

$\delta \rho / \rho \uparrow \delta_c$
A Signature: more/fewer massive halos

dark matter halos form in peaks of the density field

$\delta \rho / \rho \uparrow \quad \delta c$

non-Gaussianity changes the number density of peaks

Gaussian

$f_{NL}, \tau_{NL} = (6/5 f_{NL})^2$

$f_{NL}, \tau_{NL} = 2(6/5 f_{NL})^2$

$f_{NL}=0, g_{NL}$

number of peaks \Leftrightarrow number of halos

Lucchin & Matarrese 1988; Chiu, Ostriker, Strauss 1998; Robinson, Gawiser, Silk 2000; Matarrese, Verde, Jimenez 2000
Simplest approach for analytic mass function

number of peaks \(\approx\) number of halos

number of peaks \(\approx\) area in tail of PDF

PDF for \(\delta(M)\) \(\leftrightarrow\) \# of halos of mass \(M\)

(Press & Schechter 1974)

Lucchin & Matarrese 1988; Chiu, Ostriker, Strauss 1998;
Robinson, Gawiser, Silk 2000; Matarrese, Verde, Jimenez 2000
Simplest approach for analytic mass function

number of peaks \(\approx \) number of halos

PDF for \(\delta(M) \leftrightarrow \# \) of halos of mass \(M \)

(Press & Schechter 1974)

\[\ln(M/\rho_0) = \ln(n/\delta \rho_{\text{rms}}) \]

Simulations

Press-Schechter

Jenkins et al 2000

PDF for \(\delta(M) \leftrightarrow \# \) of halos of mass \(M \)

number of peaks \(\approx \) area in tail of PDF

probability

\[\delta \rho/\rho \]

\[\delta_c \]

only qualitative agreement for Gaussian cosmology

Lucchin & Matarrese 1988; Chiu, Ostriker, Strauss 1998; Robinson, Gawiser, Silk 2000; Matarrese, Verde, Jimenez 2000
Simplest approach for analytic mass function

number of peaks ≈ number of halos

PDF for \(\delta(M) \) ↔ # of halos of mass \(M \)

(Press & Schechter 1974)

number of peaks ≈ area in tail of PDF

But seems to work OK for the non-Gaussian correction \(n_{NG}(M)/n_{G}(M) \)

Pillepich, Porciani, Hahn 2008 (and others)

Lucchin & Matarrese 1988; Chiu, Ostriker, Strauss 1998;
Robinson, Gawiser, Silk 2000; Matarrese, Verde, Jimenez 2000
Simplest approach for analytic mass function

number of peaks \(\approx\) number of halos

PDF for \(\delta(M)\) \(\leftrightarrow\) \# of halos of mass \(M\)

(Press & Schechter 1974)

But seems to work OK for the non-Gaussian correction \(n_{NG}(M)/n_G(M)\)

Of course we need simulations to trust this, and once we have them we can just fit for \(n_{NG}(M)\)

Dalal, Dore, Huterer, Shirokov 2007

Lucchin & Matarrese 1988; Chiu, Ostiker, Strauss 1998; Robinson, Gawiser, Silk 2000; Matarrese, Verde, Jimenez 2000
Nevertheless, it’s useful to have an analytic understanding
Nevertheless, it’s useful to have an analytic understanding.

How to get the PDF for $\delta(M)$?
Nevertheless, it’s useful to have an analytic understanding

How to get the PDF for $\delta(M)$?

- Measure PDF from realization of NG initial conditions (e.g. Sefusatti, Vale, Kadota, Frieman 2006; Dalal, Dore, Huterer, Shirokov 2007)
Nevertheless, it’s useful to have an analytic understanding

How to get the PDF for $\delta(M)$?

- Measure PDF from realization of NG initial conditions (e.g. Sefusatti, Vale, Kadota, Frieman 2006; Dalal, Dore, Huterer, Shirokov 2007)
- Approximate PDF by some truncating a cumulant expansion (e.g. asymptotic expansion of Matarrese, Verde, Jimenez or Edgeworth series ML, Miller, Shandera, Verde 2007)
Nevertheless, it’s useful to have an analytic understanding

How to get the PDF for $\delta(M)$?

- Measure PDF from realization of NG initial conditions (e.g. Sefusatti, Vale, Kadota, Frieman 2006; Dalal, Dore, Huterer, Shirokov 2007)

- Approximate PDF by some truncating a cumulant expansion (e.g. asymptotic expansion of Matarrese, Verde, Jimenez or Edgeworth series ML, Miller, Shandera, Verde 2007)

Cumulants easy to compute, pretty insensitive to “shape” of polyspectra
Nevertheless, it’s useful to have an analytic understanding

How to get the PDF for $\delta(M)$?

- Measure PDF from realization of NG initial conditions (e.g. Sefusatti, Vale, Kadota, Frieman 2006; Dalal, Dore, Huterer, Shirokov 2007)

- Approximate PDF by some truncating a cumulant expansion (e.g. asymptotic expansion of Matarrese, Verde, Jimenez or Edgeworth series ML, Miller, Shandera, Verde 2007)

- Approximate PDF by truncating ln(Edgeworth) series (ML & Smith 2011)

Cumulants easy to compute, pretty insensitive to “shape” of polyspectra
Nevertheless, it's useful to have an analytic understanding

How to get the PDF for $\delta(M)$?

- Measure PDF from realization of NG initial conditions (e.g. Sefusatti, Vale, Kadota, Frieman 2006; Dalal, Dore, Huterer, Shirokov 2007)

- Approximate PDF by some truncating a cumulant expansion (e.g. asymptotic expansion of Matarrese, Verde, Jimenez or Edgeworth series ML, Miller, Shandera, Verde 2007)

- Approximate PDF by truncating \ln(Edgeworth series) (ML & Smith 2011)

Cumulants easy to compute, pretty insensitive to "shape" of polyspectra (τ_{NL} terms log-divergent w/box size) Boubeker & Lyth 2005
Nevertheless, it’s useful to have an analytic understanding

How to get the PDF for $\delta(M)$?

- Measure PDF from realization of NG initial conditions (e.g. Sefusatti, Vale, Kadota, Frieman 2006; Dalal, Dore, Huterer, Shirokov 2007)

- Approximate PDF by some truncating a cumulant expansion (e.g. asymptotic expansion of Matarrese, Verde, Jimenez or Edgeworth series ML, Miller, Shandera, Verde 2007)

- Approximate PDF by truncating \ln(Edgeworth series) (ML & Smith 2011)

A Signature: more/fewer massive halos
N-body simulations with f_{NL}, g_{NL}, and τ_{NL}

\[\Phi(x) = \Phi_G(x) + f_{NL} (\Phi_G(x)^2 - \langle \Phi_G^2 \rangle) \]

- f_{NL}
- $\Phi(x)$
- $\Phi_G(x)$
- $\langle \Phi_G^2 \rangle$
- $M (h^{-1} M_\odot)$
- Non-Gaussian correction
- $\tilde{n}_{NL}(M)/\tilde{n}_{Gaussian}(M)$
- Edgeworth, $f_{NL} = \pm 500$, $\tau_{NL} = (\frac{6}{5} f_{NL})^2$
- Log Edge., $f_{NL} = \pm 500$, $\tau_{NL} = (\frac{6}{5} f_{NL})^2$
A Signature: more/fewer massive halos
N-body simulations with f_{NL}, g_{NL}, and τ_{NL}

$\Phi(x) = \Phi_G(x) + g_{\text{NL}} (\Phi_G(x)^3 - 3\Phi_G(x)\Phi_G^2)$?

kurtosis can have important effects on the mass function!

(see also Desjacques and Seljak 2010)
A Signature: more/fewer massive halos

N-body simulations with f_{NL}, g_{NL}, and τ_{NL}

f_{NL}, τ_{NL} independent

$\tau_{NL} \neq (5/6 f_{NL})^2$ is noticeable!
A Signature: more/fewer massive halos

comparison of f_{NL}, g_{NL}, and τ_{NL}

τ_{NL} looks like f_{NL} with larger f_{NL}

g_{NL} looks a little different
Summary

- f_{NL}, g_{NL} and τ_{NL} non-Gaussian initial conditions can significantly change the abundance of dark matter halos.

- We've found an analytic description for the change to the halo mass function that compares well to N-body for f_{NL}, g_{NL} and τ_{NL} -- perhaps it works for more general forms of NG?

See also Sugiyama's talk!