Freeze-In Weak-Scale Dark Matter

## Lawrence Hall University of California, Berkeley

Freeze-In - General Idea LJH, Karsten Jedamsik, John March-Russell and Stephen West, arXiv:0911.1120 Cliff Cheung, Gilly Elor, LJH, and Piyush Kumar arXiv:1010.0022 Cosmology Hidden Sector Freeze-In Cliff Cheung, Gilly Elor, LJH, and Piyush Kumar arXiv:1010.0024 II) LHC Signals Asymmetric Freeze-In LJH, John March-Russell and Stephen West, arXiv:1010.0245

## Ann Arbor Michigan

October, 2010



Features of Freeze-Out







⋇

 $T_R$ , initial conditions, ...

Measurements at LHC may allow a prediction of  $\Omega_D h^2$ 

$$\Omega_D h^2 = (\#) \frac{1}{\langle \sigma v \rangle}$$



## No dependence on unknown UV physics:

Features of Freeze-Out







⋇

 $T_R$ , initial conditions, ...

Measurements at LHC may allow a prediction of  $\Omega_D h^2$ 

$$\Omega_D h^2 = (\#) \frac{1}{\langle \sigma v \rangle}$$

**A WIMP** miracle?



## No dependence on unknown UV physics:

Seek Alternative Mechanism

### ⋇ Initial state: particles with thermal distributions

Production is IR dominated -- ie occurs at  $T \sim m_i$ ✵



No sensitivity to initial conditions:  $T_R, \eta, \dots$ 

Measurements at LHC allow a prediction of  $\Omega_D h^2$ ✻

 $\longrightarrow m_i \lesssim v$  New Physics at the Weak Scale



 $(m_i)$ 

Seek Alternative Mechanism

### ⋇ Initial state: particles with thermal distributions

Production is IR dominated -- ie occurs at  $T \sim m_i$ ✵



No sensitivity to initial conditions:  $T_R, \eta, \dots$ 

Measurements at LHC allow a prediction of  $\Omega_D h^2$ ✻

 $\longrightarrow m_i \lesssim v$  New Physics at the Weak Scale

Drop 
$$T_{eq} \sim v^2/M_{Pl}$$
; Stress LH



 $(m_i)$ 



Thermal Properties of DM at  $T \sim v$ 

Three possibilities

- Part of SM thermal bath
- Not part of a thermal bath 2.
- Part of a hidden sector thermal bath 3.

Both 2 and 3 allow an IR dominated production mechanism that may be tested at LHC

$$\Omega_D h^2 = (\#) \frac{1}{\langle \sigma v \rangle} \qquad \longrightarrow \qquad \Omega_D h^2$$



## **WIMPs**

## **FIMPs**

## Hidden Sector DM

 $= (\#) \frac{1}{\tau}$ 

Aspects of Freeze-In:

### **(I)** The Mechanism and Prediction

### **(II) General Frameworks and Features**

### Supersymmetric Models and LHC Signals **(III)**

Aspects of Freeze-In:

## () The Mechanism and Prediction

## (II) General Frameworks and Features

## (III) Supersymmetric Models and LHC Signals

Earlier work:  $\phi_S$ 

 $\tilde{\nu}_R$ 

 $\nu_R$ 

•••

McDonald ph/0106249 Asaka, Ishiwata, Moroi ph/0512118 Kusenko ph/0609081

## I'll stress general behavior

(1) The Freeze-In Mechanism



FIMP DM:



Hidden DM:







(1) The Freeze-In Mechanism









## eg d=4 $10^{-13} < \lambda < 10^{-6}$



## Heading "In" and "Out" of Equilibrium





## Heading "In" and "Out" of Equilibrium







## Heading "In" and "Out" of Equilibrium



**Two Thermal Mechanisms!!** 

![](_page_14_Picture_3.jpeg)

The Lifetime Prediction

**\*** Freeze-in production of X

Decays typically beat scattering

Dominated by era

Giving abundance

$$Y_{FI} = \frac{1.64 \, g_V}{g_*^{3/2}} \, \frac{\Gamma_V \, M_{Pl}}{m_V^2}$$

and lifetime

$$\tau_V = 7.7 \times 10^{-3} \text{s} \quad g_V \left(\frac{m_X}{100 \text{ GeV}}\right) \left(\frac{300 \text{ GeV}}{m_V}\right)$$

![](_page_15_Figure_10.jpeg)

 $T \sim m_V$ 

![](_page_15_Picture_12.jpeg)

The Lifetime Prediction

**\*** Freeze-in production of X

Decays typically beat scattering

Dominated by era

Giving abundance Y\*

$$Y_{FI} = rac{1.64 \, g_V}{g_*^{3/2}} \; rac{\Gamma_V \, M_{Pl}}{m_V^2}$$

and lifetime

$$\tau_V = 7.7 \times 10^{-3} \text{s} \ g_V \left(\frac{m_X}{100 \,\text{GeV}}\right) \left(\frac{300 \,\text{GeV}}{m_V}\right)$$

✵ Applies to both FIMP and Hidden DM,

⋇ Completely general for any decay-dominated FI?? No -- later

Susy theories: V is the LOSP:  $(\tilde{\chi}^{\pm}, \tilde{l}^{\pm}, ...)$ 券

![](_page_16_Figure_13.jpeg)

### $T \sim m_V$

![](_page_16_Picture_15.jpeg)

Asymmetric Freeze-In

- \* Hidden sector with a global  $U(1)_X$
- ☀ V has multiple decay modes

![](_page_17_Figure_3.jpeg)

Non-Thermal:  $T' \neq T$ ⋇ leading to an X asymmetry  $\varepsilon = \frac{\Gamma(V \to X) - \Gamma(\bar{V} \to \bar{X})}{\Gamma(V \to X) + \Gamma(\bar{V} \to \bar{X})} \simeq \frac{1}{16\pi} \frac{Im A_1 A_2^* A_{12}}{|A_2|^2}$ 

![](_page_17_Picture_6.jpeg)

![](_page_17_Picture_7.jpeg)

Asymmetric Freeze-In

- ⋇ Hidden sector with a global  $U(1)_X$
- ⋇ V has multiple decay modes

![](_page_18_Figure_3.jpeg)

- Non-Thermal:  $T' \neq T$ ⋇ leading to an X asymmetry
- ⋇ A large symmetric  $Y_X$  is annihilated away by a large  $\langle \sigma v \rangle'$ , leaving

requiring

$$\eta_X = \epsilon Y_X$$
  
 $\tau_V = 7.7 \times 10^{-3} \epsilon \text{ s}$ 

If B - L + X conserved, simultaneous generation of  $\eta_B$  !! ⋇

![](_page_18_Picture_9.jpeg)

![](_page_18_Picture_10.jpeg)

## $\varepsilon = \frac{\Gamma(V \to X) - \Gamma(V \to X)}{\Gamma(V \to X) + \Gamma(\bar{V} \to \bar{X})} \simeq \frac{1}{16\pi} \frac{Im A_1 A_2^* A_{12}}{|A_2|^2}$

![](_page_19_Picture_0.jpeg)

![](_page_19_Picture_1.jpeg)

"Phase Diagrams" for FIMP DM

Allow d=4 coupling  $\lambda$  of X to thermal bath to vary ⋇ over many orders of magnitude

⋇ 4 production mechanisms for X | Freeze-Out of X

FIMP DM {

- **II** Relativistic Decoupling
- III Freeze-In
  - IV Freeze-Out and Decay of LOSP

![](_page_20_Picture_6.jpeg)

"Phase Diagrams" for FIMP DM

Allow d=4 coupling  $\lambda$  of X to thermal bath to vary ⋇ over *many* orders of magnitude

- ⋇ 4 production mechanisms for X | Freeze-Out of X **II** Relativistic Decoupling III Freeze-In FIMP DM IV Freeze-Out and Decay of LOSP
- ⋇ Choose simple models
  - Scan over parameter space
  - Determine regions where each production mechanism dominates

![](_page_21_Picture_6.jpeg)

## Quartic Scalar Interaction

 $\lambda V^{\dagger}V X^{\dagger}X$ 

 $m_X > m_{V_+}$ 

![](_page_22_Picture_3.jpeg)

![](_page_22_Figure_4.jpeg)

![](_page_22_Picture_5.jpeg)

Yukawa Coupling

 $V_1(-)$ 

 $\lambda (V_1 V_2) X$  $m_2 \ll m_X < m_1$ 

![](_page_23_Figure_2.jpeg)

![](_page_23_Figure_3.jpeg)

![](_page_23_Figure_4.jpeg)

 $\Omega h^2$ 

0.1

![](_page_23_Figure_7.jpeg)

![](_page_23_Figure_8.jpeg)

Hidden Sector DM

### Attempt model independent approach

![](_page_24_Figure_2.jpeg)

Hidden Sector DM

## Attempt model independent approach

![](_page_25_Figure_2.jpeg)

Phase Diagram is 7 dimensional!

What are the possible production mechanisms?

![](_page_25_Picture_5.jpeg)

![](_page_25_Figure_6.jpeg)

Yield Plots: FO and FO'

![](_page_26_Figure_1.jpeg)

![](_page_26_Picture_2.jpeg)

Yield Plots: FO and Decay; FI

![](_page_27_Figure_1.jpeg)

![](_page_27_Picture_2.jpeg)

## Freeze-Out and Decay of LOSP wins

## Increase $\Gamma$ by factor 100

![](_page_28_Picture_0.jpeg)

If Y' is increased above a critical value

XX annihilations restart, and Y' hits a quasi-static equilibrium Y' is determined by  $\langle \sigma v \rangle'$  and may emerge

![](_page_28_Figure_3.jpeg)

Phase Diagram for Hidden DM

![](_page_29_Figure_1.jpeg)

![](_page_29_Picture_2.jpeg)

Including Asymmetries

![](_page_30_Figure_1.jpeg)

![](_page_30_Picture_2.jpeg)

 $m = 100 \,\mathrm{GeV}, \, m' = 50 \,\mathrm{GeV}$  $\langle \sigma v \rangle = \langle \sigma v \rangle_0 = 3 \times 10^{-26} \text{ cm}^3/\text{s}$ 

Including Asymmetries

![](_page_31_Figure_1.jpeg)

Asymmetric FO&D requires large  $\tau$  and huge  $\langle \sigma v \rangle'$ \*

![](_page_31_Picture_3.jpeg)

![](_page_31_Figure_5.jpeg)

Including Asymmetries

![](_page_32_Figure_1.jpeg)

Asymmetric FO&D requires large  $\tau$  and huge  $\langle \sigma v \rangle'$ \*

Asymmetric FI dominates over a very wide range of interesting  $(\tau, \langle \sigma v \rangle')$ ⋇

![](_page_32_Picture_4.jpeg)

 $\xi_{\rm UV} = 0.01$  $m = 100 \,\mathrm{GeV}, \, m' = 50 \,\mathrm{GeV}$  $\langle \sigma v \rangle = \langle \sigma v \rangle_0 = 3 \times 10^{-26} \text{ cm}^3/\text{s}$ 

## One Sector Cosmology with $\Omega h^2 = 0.11$

FO:

![](_page_33_Figure_4.jpeg)

![](_page_34_Figure_0.jpeg)

![](_page_35_Figure_0.jpeg)

FI and FO&D cosmologies can be reconstructed Can  $\epsilon$  be measured?

Higher Dimensional Operators and UV Sensítívíty

![](_page_36_Figure_1.jpeg)

Decays typically dominate only if  $T_R < 20 \,\mathrm{TeV}$ 

![](_page_36_Picture_3.jpeg)

![](_page_36_Picture_4.jpeg)

![](_page_36_Picture_5.jpeg)

Higher Dimensional Operators and UV Sensitivity

![](_page_37_Figure_1.jpeg)

Decays typically dominate only if  $T_R < 20 \,\mathrm{TeV}$ 

⋇ Consider a universal small portal coupling  $\lambda$ 

$$\lambda O_4 + \frac{\lambda}{M_*} O_5$$

![](_page_37_Picture_6.jpeg)

 $M_* \sim 10^9 \,\mathrm{GeV}$ eg  $m \sim v \sim 200 \,\mathrm{GeV}$ 

![](_page_37_Picture_8.jpeg)

![](_page_37_Picture_9.jpeg)

![](_page_37_Picture_10.jpeg)

![](_page_37_Picture_11.jpeg)

F1 from Many Vísíble Partícles

![](_page_38_Figure_1.jpeg)

Can only measure  $\Gamma_{LOSP}$ 

![](_page_38_Picture_4.jpeg)

## Lose $\tau(\Omega h^2)$ relation??

F1 from Many Vísíble Partícles

![](_page_39_Figure_1.jpeg)

Can only measure  $\Gamma_{LOSP}$ 

\* 
$$\frac{\Gamma_i}{m_i^2} \propto \frac{1}{m_i}$$
 Dominated by  $m_{LOSP}$ 

⋇

Simple model with just one coupling parameter

![](_page_39_Picture_5.jpeg)

## Lose $\tau(\Omega h^2)$ relation??

## **IR** domination!

![](_page_39_Picture_9.jpeg)

111 Supersymmetric Models and LHC Signals

![](_page_40_Picture_1.jpeg)

Three d=4 Portals

![](_page_41_Figure_1.jpeg)

## Decays of Chargino LOSP

![](_page_41_Figure_3.jpeg)

## DM $\tilde{x}'$ $\tilde{b}'$ $\tilde{x}'$

Three d=4 Portals

![](_page_42_Figure_1.jpeg)

![](_page_42_Figure_2.jpeg)

| FI                   |                                                            |                                                                                                                  |                                                               |                                                                                             |
|----------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|---------------------------------------------------------------------------------------------|
|                      | Higgs Portal: $H_u H_d X'$                                 |                                                                                                                  | Bino Portal: $B^{\alpha}X'_{\alpha}$                          |                                                                                             |
| LOSP                 | Decay                                                      | k                                                                                                                | Decay                                                         | k                                                                                           |
| $	ilde{g}$           | ${\tilde g}  ightarrow qq {\tilde x}'$                     | $\frac{1}{(4\pi)^2}g^2_{ar{h}ar{q}q}\frac{m^4}{m^4_{ar{q}}}$                                                     | ${\tilde g}  ightarrow qq {\tilde x}'$                        | $\frac{1}{(4\pi)^2}g_{1q}^2\frac{m^4}{m_{\tilde{q}}^4}$                                     |
| ν                    | $\tilde{\nu} \to \ell^{\pm}(h^{\mp},W^{\mp})\tilde{x}'$    | $\frac{1}{(4\pi)^2}g^2_{\bar{h}\bar{\nu}\ell}\frac{m^2}{m^2_{\bar{h}}}(1,g^2_2)$                                 | $\tilde{\nu} \to \ell^{\pm}(h^{\mp}, W^{\mp})\tilde{x}'$      | $\frac{1}{(4\pi)^2}g_{1h}^2g_{\bar{h}\bar{\nu}\ell}^2\frac{m^2}{m_{\bar{h}}^2}(1,g_2^2)$    |
|                      | $\tilde{\nu} \rightarrow \tilde{\nu} \tilde{x}'$           | $g^2_{ar{h}ar{ u} u}$                                                                                            | $\nu  ightarrow \nu \tilde{x}'$                               | $g_{1 u}^2$                                                                                 |
| $	ilde{q}$           | $\tilde{q} \rightarrow q \tilde{x}'$                       | $g^2_{ar{h}ar{q}q}$                                                                                              | $\tilde{q} \rightarrow q \tilde{x}'$                          | $g_{1q}^2$                                                                                  |
|                      | $\tilde{q} \to q(h^{0,\pm}, W^{0,\pm})\tilde{x}'$          | $\frac{1}{(4\pi)^2}g_{\tilde{h}\tilde{q}q}^2\frac{m^2}{m_{\tilde{h}}^2}(1,g_2^2)$                                | $\tilde{q} \to q(h^{0,\pm}, W^{0,\pm})\tilde{x}'$             | $\frac{1}{(4\pi)^2}g_{1h}^2g_{h\bar{q}q}^2\frac{m^2}{m_{\tilde{h}}^2}(1,g_2^2)$             |
| $\tilde{\chi}^{\pm}$ | $\tilde{\chi}^\pm \to (h^\pm, W^\pm) \tilde{x}'$           | $g_2^2(	heta_{ar{\chi}ar{w}}^2,	heta_{ar{\chi}ar{h}}^2)$                                                         | $\tilde{\chi}^{\pm}  ightarrow (h^{\pm}, W^{\pm}) \tilde{x}'$ | $g_{1h}^2(	heta_{	ilde{\chi}	ilde{h}}^2,	heta_{	ilde{\chi}	ilde{w}}^2)$                     |
|                      | $\tilde{\chi}^{\pm} \rightarrow \ell^{\pm} \nu \tilde{x}'$ | $\frac{1}{(4\pi)^2}g^2_{\tilde{\chi}\tilde{\ell}\nu}g^2_{\tilde{h}\tilde{\ell}\ell}\frac{m^4}{m^4_{\tilde{l}}}$  | $\tilde{\chi}^{\pm} \rightarrow \ell^{\pm} \nu \tilde{x}'$    | $\frac{1}{(4\pi)^2}g_{\tilde{\chi}\tilde{\ell}\nu}^2g_{1\ell}^2\frac{m^4}{m_{\tilde{l}}^4}$ |
| <i>Χ</i> ̃0          | $\tilde{\chi_0} \to (h^0, Z) \tilde{x}'$                   | $\theta^2_{\tilde{\chi}\tilde{h}}, \theta^2_{\tilde{\chi}\tilde{h}}g_2^2$                                        | $\tilde{\chi}_0 \to (h^0, Z) \tilde{x}'$                      | $\theta^2_{\tilde{\chi}\tilde{h}}g^2_{1h}, \theta^2_{\tilde{\chi}\tilde{h}}g^2_2g^2_{1h}$   |
|                      | $	ilde{\chi}_0 	o y' 	ilde{y}'$                            | $	heta_{	ilde{\chi}	ilde{h}}^2\lambda'^2$                                                                        | $	ilde{\chi}_0 	o y' 	ilde{y}'$                               | $	heta_{	ilde{\chi}ar{b}}^2 g'^2$                                                           |
|                      | $	ilde{\chi}_0  ightarrow \ell^+ \ell^- 	ilde{x}'$         | $\frac{1}{(4\pi)^2}g^2_{\tilde{\chi}\tilde{\ell}\ell}g^2_{\tilde{h}\tilde{\ell}\ell}\frac{m^4}{m^4_{\tilde{l}}}$ | $	ilde{\chi_0}  ightarrow \ell^+ \ell^- 	ilde{x}'$            | $\frac{1}{(4\pi)^2}g^2_{\chi\bar\ell\ell}g^2_{1\ell}\frac{m^4}{m^4_{\bar l}}$               |
| $\tilde{\ell}^{\pm}$ | $\tilde{\ell}^{\pm} \rightarrow \ell^{\pm} \tilde{x}'$     | $g^2_{ar{h}ar{\ell}\ell}$                                                                                        | $\tilde{\ell}^{\pm} \rightarrow \ell^{\pm} \tilde{x}'$        | $g_{1\ell}^2$                                                                               |

## DM $\tilde{x}'$ $\tilde{b}'$ $\tilde{x}'$

![](_page_43_Picture_0.jpeg)

\* LHC Discovers  $\tilde{l}^-$ LOSP  $\begin{cases} m - 200 \text{ GeV}, \\ \tilde{l}^- \rightarrow l^- + \text{missing} & \tau = 0.1 \text{ sec} \end{cases}$ 

Not FO&D:  $Y_{FO}(\tilde{l}^-)$  too small ✻

## reconstruction gives $m_{X'} = 100 \,\mathrm{GeV}$

![](_page_44_Picture_0.jpeg)

 $m = 200 \,\mathrm{GeV}$ LHC Discovers  $\tilde{l}^-$ LOSP  $\tilde{l}^- \to l^- + \text{missing} \qquad \tau = 0.1 \, \text{sec}$ \*

Not FO&D:  $Y_{FO}(\tilde{l}^-)$  too small ⋇

![](_page_44_Figure_4.jpeg)

## reconstruction gives $m_{X'} = 100 \,\mathrm{GeV}$

![](_page_44_Figure_7.jpeg)

![](_page_45_Picture_0.jpeg)

 $m = 200 \,\mathrm{GeV}$ LHC Discovers  $\tilde{l}^{-}$ LOSP  $\rightarrow l^- + \text{missing}$ 

Not FO&D:  $Y_{FO}(\tilde{l}^-)$  too small ⋇

![](_page_45_Figure_4.jpeg)

## $\tau = 0.1 \sec$ reconstruction gives $m_{X'} = 100 \,\mathrm{GeV}$

![](_page_45_Figure_7.jpeg)

 $\tilde{q} \rightarrow q \, \tilde{x}', \quad \dots \quad \Omega_{\tilde{x}'} = 0.11 \quad ??$ 

Asymmetric Freeze-In

Vía the Lepton PortaL

### Non-LOSP $\tilde{\chi}^-$ have fast decays \*

They also have slow decays \* that contribute to FI of  $\tilde{x}'$ via  $\lambda LH_u X'$ 

![](_page_46_Figure_5.jpeg)

Asymmetric Freeze-In

Vía the Lepton PortaL

### Non-LOSP $\tilde{\chi}^-$ have fast decays \*

\* They also have slow decays that contribute to FI of  $\tilde{x}'$ via  $\lambda L H_u X'$ 

⋇

![](_page_47_Picture_4.jpeg)

![](_page_47_Figure_5.jpeg)

![](_page_47_Figure_6.jpeg)

![](_page_48_Picture_0.jpeg)

 $\lambda L H_u X'$  conserves B - L + X

![](_page_48_Picture_2.jpeg)

\*

Sphalerons re-process the lepton asymmetry to give

$$\eta_B = \frac{28}{79} f(\tilde{m}_i) \eta_X$$

![](_page_48_Picture_5.jpeg)

![](_page_48_Picture_6.jpeg)

![](_page_49_Picture_0.jpeg)

Sphalerons re-process the lepton asymmetry to give

$$\eta_B = \frac{28}{79} f(\tilde{m}_i) \eta_X$$

![](_page_49_Picture_3.jpeg)

![](_page_49_Picture_4.jpeg)

![](_page_50_Picture_0.jpeg)

Sphalerons re-process the lepton asymmetry to give

⋇

$$\eta_B = \frac{28}{79} f(\tilde{m}_i) \eta_X$$

Re-construction from LOSP lifetime

$$\tau(\tilde{\chi}^- \to l^- \tilde{\chi}') = 1.4 \times 10^{-8} \mathrm{s} \left(\frac{\varepsilon}{10^{-5}}\right) \left(\frac{m_X}{2 \,\mathrm{GeV}}\right) \left(\frac{200 \,\mathrm{GeV}}{m_{\tilde{\chi}^+}}\right)$$

 $\tilde{\chi}^-$  has fast decay  $\tilde{\chi}^- o W^- \tilde{\chi}^0$ ✵

Must relate  $\tau(\tilde{\chi}^- \to l^- \tilde{x}')$  to LOSP lifetime. eg for  $\tilde{l}^-$  LOSP ⋇

$$\begin{split} \tau(\tilde{l}^- \to h \, \tilde{x}') &= r \, \left(\frac{m_{\tilde{\chi}^-}}{m_{\tilde{l}^-}}\right) \tau(\tilde{\chi}^- \to l^- \, \tilde{x}') \\ & \swarrow \\ \text{susy mixing angles, etc} \end{split} \qquad \textbf{Must measure:} \end{split}$$

![](_page_50_Picture_8.jpeg)

LOSP lifetime susy spectrum CP violating phases

## <u>CP Víolatíon from MSSM Soft Phases</u>

![](_page_51_Picture_1.jpeg)

Phase must come from visible sector

⋇ eg. take  $\tilde{\chi}^-$  to be wino-like

![](_page_51_Figure_4.jpeg)

⋇  $\phi_{\mu}$  could be measured by precision spectroscopy at ILC, or via discovery of EDMs

$$\epsilon = \frac{g^2}{16\pi} f(M_1, M_2, \mu, \tan\beta) \sin\phi_\mu$$

0

![](_page_51_Figure_8.jpeg)

![](_page_52_Picture_0.jpeg)

## There are 2 thermal production mechanisms with

- Initial state: particles with thermal distributions
- st Production IR dominated at  $T \sim v$  (independent of  $T_R, \eta, ...$  )
- Measurements at LHC may allow a prediction of  $\ \Omega_D h^2$

# s $(m_i)$ endent of $T_R,\,\eta,\dots$ ) f $\Omega_D h^2$

![](_page_53_Picture_0.jpeg)

## There are 2 thermal production mechanisms with

- Initial state: particles with thermal distributions
- st Production IR dominated at  $T\sim v$  (independent of  $T_R,\,\eta,...$  )
- st Measurements at LHC may allow a prediction of  $\ \Omega_D h^2$

## Freeze-Out $\langle \sigma v \rangle = \frac{10^{-4}}{(200 \, {\rm GeV})^2}$ Freeze-In

$$\tau_{LOSP} = 7.7 \times 10^{-3} \text{s} \ g_{LOSP} \left(\frac{m_X}{100 \,\text{GeV}}\right) \left(\frac{30}{100 \,\text{GeV}}\right)$$

![](_page_53_Picture_7.jpeg)

Only FI has an asymmetric version

# s $(m_i)$ endent of $T_R,\,\eta,\dots$ ) f $\Omega_D h^2$

![](_page_53_Picture_10.jpeg)

 $\times \epsilon$ 

A WIMP Miracle?

\* **Observations** require  $\langle \sigma v \rangle_0 \sim 3 \times 10^{-26} \,\mathrm{cm}^3 \mathrm{s}^{-1}$ \* Dimensional analysis using the weak scale  $\langle \sigma v \rangle \sim \frac{1}{v^2} \sim 3 \times 10^{-22} \,\mathrm{cm}^3 \mathrm{s}^{-1}$ \* Annihilation via heavy virtual state  $\langle \sigma v \rangle \sim g^4 \, \frac{m_D^2}{m_W^4} \sim 3 \times 10^{-26} \, \mathrm{cm}^3 \mathrm{s}^{-1} \left(\frac{g}{0.3}\right)^4 \left(\frac{m_D}{100 \,\mathrm{GeV}}\right)^2 \left(\frac{400 \,\mathrm{GeV}}{m_W}\right)^4$ 

Looks good, but allowing a factor 5 variation in each of  $g, m_D, m_V 10^7$  spread

More predictive within a particular model --WIMP DM in MSSM is pushed into corners

\*

![](_page_54_Picture_4.jpeg)

![](_page_54_Picture_5.jpeg)