

Hylogenesis:

A Unified Origin for Baryonic Visible Matter and Antibaryonic Dark Matter

David Morrissey

with

Hooman Davoudiasl, Kris Sigurdson, Sean Tulin

[arXiv:1008.2399 [hep-ph]]

U Michigan NCHU Workshop, October 21, 2010

Questions about Baryogenesis

- 1. Moduli stabilization + Low-Energy Supersymmetry?
 - Motivates moduli oscillation with low reheating.
 - Dark matter can be produced via non-thermal decays.
 - But what about baryogenesis?
- 2. $\Omega_{DM} \simeq 5 \Omega_B$?
 - Just an accident?
 - Baryogenesis mechanisms that give this naturally?

A Unified Solution?

- But maybe there is a reason for $\rho_{DM} \sim \rho_B$.
- The DM density could be set by the baryon asymmetry.
 → Asymmetric Dark Matter (ADM)
 [Nussinov '85;Kaplan '90; Barr '91; ..., Luty, Terning, Zurek '08]
- One step further hidden antibaryons as dark matter.
 [Dodelson+Widrow '90; Farrar+Zaharijas '04;Kitano+Low '04;
 Agashe+Servant '04; An,Chen,Mohapatra,Zhang '09,...]
- A Concrete Low-Temperature Mechanism:

Hylogenesis = Greek for matter + creation

A Collective Nominal Apology

- Darkogenesis (Ombrogenesis): Shelton+Zurek '10
- Hylogenesis: DavoudiasI,DM,Sigurdson,Tulin '10
- XOGENESIS: Buckley+Randall '10
- Baryomorphosis: McDonald '10
- Aidnogenesis: Blennow, Dasgupta, Fernandez-Martinez, Ruis '10

• Related papers with more tasteful titles:

Gu+Sarkar '09; Matsumoto+Saba '10; Chun '10; Hall,March-Russell,West '10

A Sample Model

- Expand the SM with new hidden particles:
 - $-X_1$, X_2 heavy (TeV) Dirac fermions, B = +1
 - -Y light (GeV) Dirac fermion, B = y
 - $-\Phi$ light (GeV) complex scalar, B = -(1 + y)
- Couplings:

$$-\mathcal{L} \supset \frac{\lambda_a}{M^2} X_{L_a} U^c D^c D^c + \zeta_a^* X_a Y \Phi + (h.c.)$$

\rightarrow "neutron portal" coupling

Also used for BG by Kitano, Murayama, Ratz '08; Allahverdi, Dutta, Sinha '10.

- One more ingredient a new U(1)' gauge symmetry:
 - Higgsed with $m_{Z'} \sim {
 m GeV}$
 - SM fields carry no direct U(1)' charge
 - $-X_{1,2}$ are neutral
 - -Y and Φ have equal and opposite charges.
- Gauge kinetic mixing:

$$\mathcal{L} \supset -\frac{\kappa}{2} B^{\mu
u} Z'_{\mu
u}, \qquad |\kappa| \ll 1.$$

Induces a Z' coupling to the SM with strength $e Q_{em} c_W \kappa$.

Matter Production

- Three Easy Steps:
 - 1. Equal numbers of X_1 and \overline{X}_1 are produced non-thermally.
 - 2. X_1 and \overline{X}_1 decay with CP violation into udd and $Y\Phi$.
 - 3. Non-asymmetric Y and Φ annihilate into Z's.
- Leftover Y and Φ make up the dark matter.

They carry baryon number and lead to novel DM signals.

Step #1: X Production

- Equal X_1 and \overline{X}_1 densities are produced when $T \ll m_{X_1}$. e.g. reheating after moduli oscillation, inflation, ...
- This is the departure from equilibrium ingredient.
- X_1 and \overline{X}_1 have $B = \pm 1$, but there is no net B number.

- Minimal non-thermal production: moduli reheating.
- Scalar field φ is displaced, oscillates, and dominates.
- Decays and Reheating (Vanilla):

$$\Gamma_{\varphi} = \frac{m_{\varphi}^{3}}{4\pi \Lambda^{2}}$$

$$T_{RH} \simeq 5 \,\text{MeV} \, \left(\frac{10}{g_{*}}\right)^{1/4} \left(\frac{M_{\text{PI}}}{\Lambda}\right) \left(\frac{m_{\varphi}}{100 \,\text{TeV}}\right)^{3/2}$$

• X_1 yield at T_{RH} :

$$\frac{n_X}{s}\Big|_{RH} \sim \mathcal{N}_X \frac{T_{RH}}{m_{\varphi}} \sim \mathcal{N}_X \left(\frac{m_{\varphi}}{M_{\text{Pl}}}\right)^{1/2}$$

 \mathcal{N}_X = average number of X per φ decay.

Step #2: X Decay

- $X \to udd$ or $\overline{Y} \Phi^*$, $\overline{X} \to \overline{u}\overline{d}\overline{d}$ or $Y \Phi$ instantaneously.
- CP violation alters partial decay widths:

 $\Gamma(X \to 3Q) = \Gamma_{3Q} + \epsilon \Gamma_{tot}$ $\Gamma(X \to \overline{Y}\overline{\Phi}) = \Gamma_{Y\Phi} - \epsilon \Gamma_{tot}$ $\Gamma(X \to 3\overline{Q}) = \Gamma_{3Q} - \epsilon \Gamma_{tot}$ $\Gamma(X \to Y\Phi) = \Gamma_{Y\Phi} + \epsilon \Gamma_{tot}$

CPT requires $\Gamma(X \to all) = \Gamma(\bar{X} \to all)$.

• Asymmetries come from tree-loop interference:

$$\epsilon = \frac{\Gamma(X \to 3Q) - \Gamma(\bar{X} \to 3\bar{Q})}{\Gamma(X \to all) + \Gamma(\bar{X} \to all)}$$
$$\simeq \frac{Im(\lambda_1^* \lambda_2 \zeta_1 \zeta_2^*)}{\pi_{X_1}^*} \frac{m_{X_1}^5}{\pi_{X_1}^5}$$

$$\frac{1}{256\pi^3 |\zeta_1|^2} \frac{1}{M^4 m_{X_2}}$$

• Final *B* Asymmetry: $\frac{n_B}{s} \simeq \epsilon \left. \frac{n_X}{s} \right|_{RH}$.

• Asymmetries split B into 3Q, $Y\Phi$.

• There is no violation of total B number.

Step #3: Annihilation

• Quarks annihilate until only the asymmetry remains:

• Y, Φ annihilate to Z' leaving only the asymmetry:

(Requires $m_{Z'} < m_{Y, \Phi}$.)

• All that remains are equal and opposite densities of

3Q and $Y\Phi$ set by the decay asymmetry.

- Y and Φ are hidden antibaryons.
- We want them to be stable.
 Hidden antibaryons as dark matter?

RIUMF

Hidden Antibaryonic Dark Matter

- We have $n_Y = n_{\Phi} = n_B$.
- Both Y and Φ can be stable if:

$$|m_Y - m_{\Phi}| < (m_p + m_e) < m_Y + m_{\Phi}$$

• They provide the right DM density if:

$$(m_Y + m_{\Phi}) = m_p \left(\frac{\rho_{DM}}{\rho_B}\right) \simeq 4.5 \,\mathrm{GeV}.$$

• Possible mass ranges: 1.7 GeV $\lesssim m_{Y,\Phi} \lesssim$ 2.9 GeV. (The Z' should be even lighter than this.)

Signals of Hylogenesis

- Y and Φ together make up the dark matter. They both couple to a light Z' vector boson.
- Potential Signals:
 - Direct Z' effects in colliders, precision experiments.
 - Elastic scattering of Y and Φ off nuclei via Z'.
 - Nucleon destruction from inelastic Y/Φ scattering.
 - Monojets at colliders from *Xudd*, DM production.
- All four types of signals could be observed soon!

Light Z' Effects

• Bounds on a light hidden Z' with kinetic mixing to the SM:

[Pospelov '08; Batell, Pospelov, Ritz '09, Reece+Wang '09; Bjorken et al. '09]

DM-Nucleon Elastic Scattering

• Y and Φ can scatter elastically off nuclei via Z'.

• Cross-section per nucleon (spin-independent):

$$\sigma_0^{SI} = (5 \times 10^{-39} cm^2) \left(\frac{2Z}{A}\right)^2 \left(\frac{e'}{0.05}\right)^2 \left(\frac{\kappa}{10^{-5}}\right)^2 \left(\frac{0.1 \,\text{GeV}}{m_{Z'}}\right)^4$$

• Current limits are about $10^{-38} cm^2$ for $m_{DM} \sim 3 \, {\rm GeV}$. [CRESST '02]

DM-Nucleon Inelastic Scattering

- DM now carries B = -1!
- Y or Φ can scatter inelastically off a nucleon.

• A nucleon is destroyed in this process.

$$Y/\Phi + N \to \Phi^*/\bar{Y} + M$$

- Inelastic DM scattering will mimic nucleon decay.
 → Induced Nucleon Decay (IND)
- Total event rates in a nucleon decay detector:

 $R_{decay} = \Gamma_{decay} N_{nuc}$ $R_{IND} = \sigma_{IND} \mathcal{F}_{DM} N_{nuc}$

 $\mathcal{F}_{DM} = \text{local DM flux:}$

$$\mathcal{F}_{DM} \simeq (4 \times 10^6 cm^{-2} s^{-1}) \left(\frac{2 \,\text{GeV}}{m_{DM}}\right) \left(\frac{\rho_{DM}^{loc}}{0.3 \,\text{GeV}/cm^3}\right)$$

- Limits on $\Gamma = \tau^{-1}$ translate into limits on $\sigma \mathcal{F} \equiv \tau_{eff}^{-1}$.
- Best current bound: $au(p o K^+
 u) > 2.3 imes 10^{33} yr$. [Superk '05]
- IND gives:

$$\tau_{eff} \simeq 10^{32} \, yr \left| \frac{m_X M^2 / \lambda^* \zeta}{\text{TeV}^3} \right|^2$$

Nucleon decay searches use a meson momentum window.
 Meson momenta from IND are larger:

Decay mode	$p_M^{\sf SND}$ (MeV)	p_M^{IND} (MeV)
$N \to \pi$	460	800 - 1400
$N \to K$	340	680 - 1360
$N \to \eta$	310	650 - 1340

IND and Stars

• DM can collect in stars and build up a large density.

- Regular DM self-annihilates and can heat up a star.
- Y and Φ DM can't self-annihilate, but can yield IND:
 - DM collects in the stellar core by elastic scattering.

- IND: $Y / \Phi + N \rightarrow \Phi^* / \bar{Y} + M$

– Φ^* annihilates with Φ , \overline{Y} annihilates with Y

- Largest effects in dense neutron stars, white dwarfs.
 Main effect is stellar heating, not nucleon destruction.
 [Kouvaris '08; Bertone+Fairbairn '08; McCullogh+Fairbairn '10; Hooper et al. '10]
- Solar bounds are weak due to evaporation ($m_{DM} \leq 2.9 \text{ GeV}$).

Collider Searches

• The operator $\frac{1}{M^2}Xudd$ will produce monojets:

• Consistent with current bounds for $M\gtrsim 300~{\rm GeV}.$ LHC should increase this to $M\gtrsim 1000~{\rm GeV}.$

• Monojets can also come from Z' Drell-Yan with ISR/FSR:

Could be observable at the LHC: [Bai, Fox, Harnik '10; Goodman '10]

[Bai, Fox, Harnik '10]

Summary

Hylogenesis realizes DM as hidden antibaryons.
 Explains DM and the baryon asymmetry simultaneously.

•
$$\rho_{DM} \simeq 5\rho_B \Rightarrow \sum_i m_{DM_i} \simeq 5 m_p.$$

- A distinctive new DM signal is Induced Nucleon Decay.
- The scenario could also be testable at the LHC.

Extra Slides

WIMP Thermal Freeze-Out

- $n_{DM} \propto e^{-m/T}$ for T < m in equilibrium.
- $\Gamma_{ann} = \langle \sigma v \rangle_{ann} n_{DM}$ falls below H^{-1} at $T = T_{fo}$. $\Rightarrow n_{DM}/s$ remains constant for $T < T_{fo}$

Gauge Kinetic Mixing

• Standard Gauge Boson Kinetic Terms:

$$(A = U(1)_{em}, \quad X = U(1)_{x})$$

$$\mathcal{L} \supset -\frac{1}{4}F_{\mu\nu}F^{\mu\nu} - \frac{1}{4}X_{\mu\nu}X^{\mu\nu},$$
with $E = -\partial_{\mu}A_{\mu\nu} - \partial_{\mu}A_{\mu\nu}X^{\mu\nu}$

with $F_{\mu\nu} = \partial_{\mu}A_{\nu} - \partial_{\nu}A_{\mu}$, $X_{\mu\nu} = \partial_{\mu}X_{\nu} - \partial_{\nu}X_{\mu}$.

• Gauge Kinetic Mixing:

$$\mathcal{L} \supset -\frac{1}{2} \epsilon F_{\mu\nu} X^{\mu\nu}.$$

• $\epsilon \sim 10^{-4} - 10^{-2}$ from integrating out heavy states charged under both $U(1)_{em}$ and $U(1)_x$. [Holdom '86]

- Assume DM carries a $U(1)_x$ charge x_{DM} , SM states do not.
- Rotate gauge fields to get canonical kinetic terms:

$$A_{\mu} \rightarrow A_{\mu} - \epsilon X_{\mu} + \mathcal{O}(\epsilon^{2})$$
$$X_{\mu} \rightarrow X_{\mu} + \mathcal{O}(\epsilon^{2})$$

• This induces a coupling between X_{μ} and SM states:

$$eQ A_{\mu} \bar{f} \gamma^{\mu} f \to eQ A_{\mu} \bar{f} \gamma^{\mu} f - eQ \epsilon X_{\mu} \bar{f} \gamma^{\mu} f.$$

SM- $U(1)_x$ coupling strength $= -e Q \epsilon \ll 1$ DM- $U(1)_x$ coupling strength $= g_x x_{DM} \sim 1$

• DM DOES NOT get an electric charge!

Constraints on Light Abelian Sectors

- Breaking $U(1)_x$ near a GeV yields a light Z_x gauge boson.
- Constraints:
 - $(g\!-\!2)_{\mu,e}$ [Pospelov '08]
 - $BR(\Upsilon(3s) \to \gamma \mu^+ \mu^-)$ [Essig *et al* '09, Battell *et al.* '09, Reece *et al.* 09] (if Z_x decays mostly to the SM)

 $BR(\Upsilon(3s) \rightarrow \gamma + inv)$ [Essig *et al* '09, Battell *et al.* '09, Reece *et al.* 09] (if Z_x decays mostly to hidden stuff)

- Supernova cooling, beam dumps [Ahlers et al. 08, Bjorken et al. '09]
- Neutrino experiments [Battell et al. '09]

TRIUMF

• ($\Upsilon(3s)$ constraint assumes Z_x decays to SM)

[[]Bjorken, Essig, Schuster, Toro '09]

Fixed target experiments can improve these bounds.
 [Bjorken et al. '09]

Dark Matter in our Galaxy

• We encounter a DM "wind" from our galactic motion.

- $v_{us} \simeq (250 \, km/s) + (30 \, km/s) (0.51) \cos(2\pi t/yr June 2).$
- $v_{DM} \sim$ Maxwell distribution with $\langle v \rangle \simeq 250 \, km/s$.

• The presence of DM is deduced by its gravitational effects.

• Combined measurements find: $\rho_{DM}/\rho_{total} = 0.21 \pm 0.01$.