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® Application to constant curvature spaces
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SUSY BREAKING IN SUGRA

Constraints on realistic models

In a SUGRA model, the scalar potential V' should allow for spontaneous
SUSY breaking with certain non-trivial features.

® Phenomenology: To get a viable particle vacuum, need a point
whereV 20, V/ =0and V” > 0.

® Cosmology: To get a viable period of slow-roll inflation, need a
regionwhere V>0, V'~ 0and V" 2 0.

The condition on V'’ can be satisfied by adjusting the values of the fields.
But the conditions on V and V"’ need an adjustment of parameters.

The natural question is then whether these two conditions can be used to
restrict the class of models of potential interest. The answer is yes.
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Denef, Douglas 2005
Gomez-Reino, Scrucca 2006

Algebraic formulation of the problem
Consider the critical situation where the scalar fields ¢ take values such
that V/ = 0 and leading to broken SUSY. The gravitino mass is mgs

and the Planck scale is set to 1.

The value of V is linked to SUSY breaking. This gives a first relevant

parameter given by:
v

3’m,§/2

The value of V'’ along a generic direction is not related to SUSY breaking
and can be easily adjusted, whereas along the sGoldstino direction G it

IS related to SUSY breaking. This gives a second relevant parameter:
VII(G)

2
M3 /9

The structure of SUGRA implies v > —1 and most importantly that X is
constrained in terms of ~.

"Y:

A=
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Necessary conditions
The requirements coming from phenomenology and cosmology imply that
both at the final vacuum and in the rolling region one should have

YR 0

More quantitatively:
Yvac < 1 s Yrol > 1

Similarly, since X defines bounds on the eigenvalues m? of V*/, namely

min(m?) < Amg,, and max(m?) > Amj ,, one should also have,

again both for vacuum metastablity and inflationary slow rolling:
A0

More guantitatively:

Avac & Sizable, A.q1 : free
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GENERAL METASTABILITY CONSTRAINT

Models with chiral multiplets

A model with chiral multiplets ®* is specified by a real Kahler potential K
and a holomorphic superpotential W. The Lagrangian depends only on

G = K + log |W|?

The value of GG determines the gravitino mass scale:
mg/2 = eC/?
The first derivatives of G determine the auxiliary fields:
Fi = —eG/2 Gz
The mixed second derivatives of GG define the target-space geometry:

giz — Gij
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Critical points
The scalar potential takes the form
V = e%(G*Gy, — 3)
Critical points are determined by the stationarity conditions
Vi =e%(G; + V;:GxG*) + G;V =0

At such a point, the scalar mass matrix is given by

Viz Vij
MI2J — ( )

Vi Viz

where
Vij = eG <gzj + VszVij — RiquGpéq) -+ <gzj — Gsz)V
%j = eG (2 Gij -I- ViVijGk) -|— (Gij — GiGj)V
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Energy and sGoldstino mass

We assume now that G* # 0 at the critical point, implying that SUSY is
spontaneously broken.

The value of V' in units of m§/2 is given simply by:

| % 1
= = -1+ - GFG
The average of the values of V/(G+) in units of mg/z along the two

real sGoldstino directions G = (G*, G*) and GL. = (iG*, —iG") also
takes a very simple form and is given by:
Vi;G*'G7T o _ Ripg G'GIGPGT
m2 ,G*G G*Gy
Imagine now that K is fixed whereas W is arbitrary. Then g;5 and R;3p4

are fixed whereas G* is arbitrary. We see that v depends only on the
norm of G*, whereas \ also depends on the orientation of G®.
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Metastability constraint Gomez-Reino, Scrucca 2006

For a given ~ the value of A depends on the sectional curvature along the
normalized Goldstino direction f* = G*/+/G¥*G},. One finds:

A(f) = 3(1 +NB(f) — 2v
In terms of the shifted sectional curvature

B(f) = 5 — Rigq /174747
We see that for v 2 0 the necessary condition A 2 0 implies that:

2 v
>-_ 1 >
S(NR 374+ R0
We thus need to get (f) 2 0 by suitably dialing f* at the given point.
In general 3(f) < X,ax and this implies a condition on the geometry:

2’y>0

ZJmax Z o1 1 - A~
31+~
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Bound on masses

Whenever X,,.x IS positive but finite, there is a bound on how large A can
be for a given ~:

Amax = 3(]— + V)Emax — 27

This implies an upper bound on the mass of the lightest scalar:

2

my;

lightest

mz S >\max
3/2

Importance for cosmological history Acharya, Kane, Kuflik 2010

The natural scale for the curvature in effective supergravity descriptions
of string models is the Planck scale, corresponding to:

ZJmax ~ 1

This suggest a non-thermal cosmological history of the Universe.
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CONSTANT CURVATURE SPACES

Maximally symmetric case

An other very simple case is the maximally symmetric case with

K = —rlog (1 — Zifbi@i)

This corresponds to the following coset manifold
SU((1,n)
U(1l) x SU(n)
The sectional curvature depends on r but not on the direction. One gets:

M =

2 2
Y == — —
3 T
This trivially leads to
2r — 3 »
Dimax = gr - = positive whenr > 3
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Minimally symmetric case
An other very simple example is the minimally symmetric case with:

K = - .r;log(1 — ®'®*) with > .r; =7

This corresponds to the following product of coset manifolds:
SU(1,1)
U(1)

The curvature depends on the r; and n — 1 angles parametrizing the S™
defined by z, = |e% f*| with }__x2 = 1. One finds:
2 2
Y(te) = 7 — DT
(w ) 3 Za, ,r.a wa
The maximum of this function occurs for x, = /74 /7 and is equal to
2r — 3

Y max = 3 = positive when r > 3

M:Hi

P-10



Less symmetric cases

On another interesting example is that of the less symmetric space with
r X FX
K =~ log (1—-2),9'®" 4+ ) ,.(9°'9’)?)

This corresponds to the following coset manifold

SO(2,2n—2)
SO(2) X SO(2n—2)
The sectional curvature depends only on » and 1 angle parametrizing the
S defined by x4 = 1+ /1—[3,(e%f%)?|?/v2 with 22 + 22 = 1.
One gets:

M =

2 4
Y(zt) = 3 ;(iﬂi-l- z?)

The maximum of this function occurs for x4 = 1/+/2 and is equal to

_2r—3

Y max = 3 = positive when r > 3

Tr
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General result Gomez-Reino, Scrucca 2007

For all the coset manifolds the value of X,,.x depends in a universal
way on the parameter r defining the overall curvature scale through the
relation

K'K, =r

One always finds:

2r — 3
Emax:_
3

" = positive whenr > 3
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MODULI IN STRING MODELS

General properties

At leading order in the week-coupling and low-energy expansions, the
form of K for the moduli is fixed by the reduction of the kinetic terms.
The corresponding sigma-model manifold M is related to the geometric
moduli space of the space-time compactification manifold.

The general form of M always involves a factor spanned by the dilaton
S and a factor spanned by one or several Kahler moduli T*. Focusing on
these fields, K involves a homogeneous function Y of degree 3.

K= —log(S+5)—logY(T"+ T

This corresponds to a manifold of the type

M=Mg X Mr
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Dilaton domination

The dilaton cannot dominate, because its K is fixed and leads to

4
2max — — 5 0
3 <

Kahler moduli domination

The Kahler moduli may instead dominate, because their K is not fixed.
However it satisfies the no-scale constraint K*K; = 3, which implies

that the curvature along the direction k* = K*/+/3 takes the value
L - 2
Rizpah' K kPkT = 3

This implies that 3(k) = 0. But nothing excludes the possibility that
along other directions one may get 3(f) > 0. We thus conclude that

Emax 2 O
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Orbifold models

In orbifold models, Mt Is always a simple coset manifold. The function
3:(f) does not depend on the point and can be studied easily, as already
seen. One finds that for f* # k* the situation always gets worse:

Y max = 0 In all cases

Calabi-Yau models

In Calabi-Yau models, M~ is usually a non-coset manifold. The function
3(f) depends on the point and is more difficult to study. One finds that
for f* # k* the situation may either improve and worsen:

= 0 In some cases
Z3max .
> 0 In some cases
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Constraints on the curvature

Since K depends only on T*+T* , we can use a real index notation. The
degree 3 homogeneity of e implies that (T* + T*)K; = —3, which is
stronger than the no-scale condition K*K; = 3 and implies that:

2 1
Lijpk? = /3 94 R;jpek? = ﬁrz‘jp
2 - 2
Rz’qukpkq = § gij Rz’qukg k9 = g gip

Let us now decompose the Goldstino direction into two orthogonal pieces:
f* = cosO k® + sinfn’®

One then easily computes:

2 4 4 L .
>(6,n) = sin*6 3 + gctg29—ﬁctg OL;;pnnInP — R;jpqn'n'nPn
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Optimal Goldstino direction Covi, Gomez-Reino, Gross, Louis, Palma, Scrucca 2008

To find the optimal Goldstino direction, it is convenient to rewrite X in the
following form in terms of P¥ = g% — k*kJ:

2 . 1 .
¥(0,n) = sin*0 [<§ — R;jpqgnmInPn? 4 EI‘ier’“SI‘pqrn’anpnq)
1 ( . 4 4
— | in™n? — —ctg 0 nr) P" (I‘S nPn?— ——ctgo ns)]
2\ V3 e pa V3 e

Given some n*, ¥ is maximized for some value of 8, but one must then
find the optimal choice for the direction n® to determine X,,.x. T0 get a
positive result it is certainly necessary that the first term be positive.

To make further progress and compute X,,,.x, One needs a more detailed
knowledge of the form of K. Fortunately, this is well known for string
models compactified on Calabi-Yau manifolds.
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DETAILED ANALYSIS

Dixon, Kaplunovsky, Louis 1990

Heterotic models Candelas, de la Ossa 1991

For a Calabi-Yau manifold with intersection numbers d; g, one finds:

A . _ . S
K = —log <§dijkt2tﬂt’“) with 2¢8 = T% + T

It follows that:
gij = V3e¥dj kP + 3 k;k;
Lijk = —eXdiji + V3 (9ijkr + girk; + gjuks) — 3V 3 kik;ky
Rijpq = 9ij9pq + 9iq9pj — edeip'rgrsdqu

We see that Mt is Special-Kahler and we deduce that:

5]

R;jpgnnInPn? = - — e2KdiprPrsdqun"n3npnq
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Two-field models Covi, Gomez-Reino, Gross, Louis, Palma, Scrucca 2008

In this case n® is uniquely fixed and P¥ = n'n?. One then finds:

3(0) = Sin40[(ga2— 1) — %(a — %ctg@)zl

where

o = —eKd,,;janank

We need the first term to be positive. But more explicitly one finds:
3 o 9

a= g0 — 1 = —§e4Kdet_3gij A

In terms of the discriminant associated to the intersection numbers:

A — _d?ndgzz +3 d%12d%22 —4 d111 d"i)’zz —4 d§12d222 ‘|_6 d111d112d122d222

Since the rest of a is negative definite, to get a > 0 we need:
A<O
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BOUﬂdS On Masses Covi, Gomez-Reino, Gross, Palma, Scrucca 2009

Let us find the maximum of (@) over 6 € [0, 27| defining the Goldstino
direction, for any fixed a € [0, +oo[ depending on the point, with

2
>(0) = sin*6 [a — g(ctgﬁ /2 —g a) ]

The maximum X,,,x increases monotonically with a, and one finds:

(64
—a, a1
81
dimax =2 9 9 = Ymax < +00
—a , a>1
L 3

We conclude that there is no bound on moduli masses:

2
Miiehtest

2
3/2

< 400

m
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Orientifold models Grimm, Louis 2004

For a Calabi-Yau manifold with intersection numbers d**, one finds:
1

K = —log (48

d’ifi’“titjtk)z with %dijktjtk = T + T
It follows that:

gi; = V3e Kdijp kP + 3 k;ik;

Ty = e Xdijn — \/§<gijkk + girk; + gjcki) + 3vV3 kik;ky,

Rijpq = — Giq9pj +e7 2% (dij'rgrsdpqs T dip'rgrsdqu)

—V3e ®(dijpkq+p.) + 3(gijkpkq+p.) + 9kik;kpk,
We see that M is Kahler and we deduce that:
P"°TgpqnPn? = e_KP"“Sdqunpnq

1

R;jpgn'n'nPn? = -3 + 2 e_deiprPrsdqun"nf'npnq
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Two-field models Covi, Gomez-Reino, Gross, Louis, Palma, Scrucca 2008

In this case n® is uniquely fixed and P¥ = n'n?. One then finds:

3(0) = sin49[(1 — ga2) — %(a — %ctg@)zl

where o depends only on the point and is given by

o = e_Kdijkn"ank

We need the first term to be positive. But more explicitly one finds:
3 o 9

a—=1— 5 & = ge_4Kdet3gij A

In terms of the discriminant associated to the intersection numbers:
A — _d1112d2222_|_3d1122d1222_4d111d1223_4d1123d222_|_6d111d112d122d222

Since the rest of a is positive definite, to get a > 0 we need
A>0
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Bounds on masses Covi, Gomez-Reino, Gross, Palma, Scrucca 2009

Let us find the extremum of 3(0) over 6 € [0, 27| defining the Goldstino
direction, for any fixed a € [0, 1] depending on the point, with

2@)=sMﬂ4a—§<dg9— lr—gf]

8

The maximum X,,,« increases monotonically with a, and one finds:

64
—a, a1

1 , a—1
We conclude that there is a bound on moduli masses:

2

mlightest
- <3+~

3/2
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CONCLUSIONS

® In SUGRA theories, there is a strong necessary condition on K for
the existence of metastable de Sitter vacua or slow-roll inflationary
regions, independently of the form of W.

® In string theories, one can apply this result to the moduli sector
and derive topological constraints on the Calabi-Yau manifolds and
bounds on the possible values of moduli masses.
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