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Abstract

When designing aircraft, avoiding dynamic aeroelastic instabilities such as flutter is a key requirement.
One way to meet this requirement is to use a multidisciplinary design optimization subject to a
flutter constraint. Flutter-constrained design optimizations have used geometrically linear detailed
models, which do not accurately predict flutter for very flexible aircraft, or geometrically nonlinear
low-order models, which do not accurately trade off cruise range and structural mass. This paper
presents a framework for integrating a geometrically nonlinear, subsonic flutter constraint that
captures the large in-flight deflections of very flexible aircraft into high-fidelity gradient-based
aerostructural optimization. The cruise range and stress constraints are computed accurately with
detailed aerostructural analyses, which use a built-up finite element model coupled to RANS CFD.
The detailed model is condensed to a low-order aeroelastic model to compute the geometrically
nonlinear flutter constraint and its adjoint derivatives with computational cost and robustness
suitable for optimization. The framework is demonstrated by maximizing the cruise range of a
subsonic high-aspect-ratio wing with respect to panel thicknesses, sweep, and span. The impact of
the geometrically nonlinear flutter constraint highly depends on the in-flight deformation level. At
low deflection levels, sweeping the wing backward is the most effective flutter prevention method,
and the flutter constraint has little impact on the achievable cruise range. At high deflection levels,
shortening the wing span is necessary to suppress flutter, reducing the achievable cruise range by up
to 5.9%. This work is a step toward making multidisciplinary design optimization a practical tool
for designing the energy-efficient, very flexible aircraft of the future, which require geometrically
nonlinear flutter analyses early in the design cycle to prevent flutter.

1 Introduction

Aircraft designs are evolving toward increasingly lightweight structures and higher-aspect-ratio
wings for higher energy efficiency [1]. For these flexible wings, flutter is a critical design concern
that must be considered early in the design process to avoid late redesign. One approach to
addressing this problem is to design the wing using multidisciplinary design optimization (MDO)
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with a flutter constraint [2]. Many previous efforts have included flutter constraints in aircraft
design optimization [2], with a recent thrust in gradient-based methods to tackle problems with
computationally expensive function evaluations and many design variables. Despite the progress in
this area, there are still significant gaps.

Flutter-constrained optimization only produces a truly flutter-free design if the underlying
flutter analysis captures the relevant physics that dictate the flutter boundary and key instability
mechanisms. In the aircraft industry, flutter analyses are typically conducted about a single reference
shape that is independent of the flight condition. The structural and aerodynamic characteristics
of the vehicle come from a linear built-up finite element model (FEM) of the airframe coupled to
potential flow doublet-lattice method (DLM) lifting surfaces. For transonic aircraft, the DLM model
is corrected with data from high-fidelity computational fluid dynamics (CFD), experiments, or both,
to account for nonlinear effects due to shock waves and flow separation. However, wing deflections
are assumed to be small enough that the aircraft’s structural characteristics can be described using
the natural frequencies and mode shapes of the undeformed structure.

This geometrically linear approach is inadequate for flutter analysis of aircraft with very flexible
high-aspect-ratio wings, which exhibit large in-flight deflections under operating loads within the
flight envelope. These potentially large deflections cause changes in the aircraft’s structural and
aerodynamic characteristics, which impact the flutter boundary and can lead to new instability
mechanisms [3–6]. Thus, aircraft with very flexible wings require a geometrically nonlinear flutter
analysis process that accounts for the impact of wing in-flight deflections and their dependency
on the flight condition [7]. Such a geometrically nonlinear process consists of (1) computing
the aircraft’s nonlinear static equilibrium at each flight condition of interest, (2) linearizing the
equations of motion about each equilibrium state, (3) extracting the aeroelastic eigenvalues of
the local linearized systems, and (4) using the obtained aeroelastic eigenvalue to compute the
flutter boundary. Flutter-constrained optimization of very flexible wings must use this geometrically
nonlinear analysis approach to accurately capture critical constraint values and produce a flutter-free
design [2]. A constraint that captures such geometrically nonlinear effects is hereafter referred to as
geometrically nonlinear flutter constraint, that is, a constraint where the underlying flutter analysis
is about the statically deformed configuration for each flight condition.

To date, optimizations that considered geometrically nonlinear flutter constraints used low-
order models to evaluate flutter and all other functions of interest. Various researchers performed
aerostructural optimizations using geometrically nonlinear beam models coupled to potential flow
thin airfoil or panel-based aerodynamics [8–12]. While beam models are suitable for modeling
the global structural dynamics of slender wings, they cannot accurately predict localized stress
distributions in the wingbox. Similarly, while potential flow aerodynamic models are advantageous
for flutter analysis of subsonic wings, they miss viscous effects required to accurately predict cruise
drag.

Most aerostructural optimization problems involve trading off structural weight, peak stress
levels, and cruise drag, thus requiring models that can accurately predict these quantities. These
accurate predictions can only be achieved using detailed structural FEMs coupled to aerodynamic
models that capture viscous and compressible flow effects, such as RANS CFD [13, 14]. Additionally,
RANS CFD can remove spurious multimodality in the design space that can appear when using
lower fidelity inviscid methods [15].

To address this issue, other efforts have included flutter constraints in optimizations where
cruise and maneuver performance, or flutter margin, are computed with high-fidelity models. He et
al. [16, 17] demonstrated aerodynamic shape optimization using a time-spectral Reynolds-averaged
Navier–Stokes (RANS) CFD flutter constraint. Jacobson and Stanford [18] performed aerostructural
optimization with a flutter constraint computed using linearized frequency-domain CFD. Jonsson et

2



al. [19, 20] developed a robust flutter solver based on the DLM with efficient adjoint derivatives.
They used it to compute a flutter constraint in large-scale optimizations of a transport aircraft
model where static cruise and maneuver flight conditions were analyzed using RANS CFD [20].
However, these efforts considered geometrically linear structures and analyzed flutter considering the
undeformed aircraft shape, which does not accurately capture the flutter boundary of aircraft with
very flexible wings [7]. Lupp and Cesnik [21, 22] prototyped a framework to integrate geometrically
nonlinear flutter constraints into a high-fidelity aerostructural optimization and used surrogate
models in place of high-fidelity analyses to demonstrate the process.

Although rare, examples of geometrically nonlinear flutter analyses based on built-up FEMs
exist in the literature. Cestino et al. [23] and Ritter et al. [24] analyzed the flutter of very flexible
wings by solving for the geometrically nonlinear static aeroelastic equilibrium at multiple flight
conditions, extracting the mode shapes and frequencies of the pre-loaded built-up (detailed) FEM,
and using them to conduct a linearized flutter analysis based on nonplanar DLM. Other researchers
have developed methods for producing geometrically nonlinear reduced order models of large built-
up FEMs and coupling them to nonplanar DLM to compute flutter boundaries of very flexible
wings [25, 26]. However, these efforts did not compute flutter derivatives nor perform optimization.

This paper presents a framework for integrating a geometrically nonlinear, subsonic flutter
constraint that accounts for wing in-flight deflections into high-fidelity gradient-based aerostructural
optimization. Like the DLM-based work of Jonsson et al. [19, 20], the framework centers around a
detailed aerostructural model composed of a built-up FEM coupled to RANS CFD. This detailed
model is used to perform high-fidelity static aerostructural analyses to compute cruise and maneuver
performance metrics, such as range and peak stress levels, which require a detailed representation
of the wing structure and aerodynamics. Like the approach prototyped by Lupp and Cesnik [22],
the geometrically nonlinear flutter constraint is evaluated by condensing the built-up FEM at the
current iteration to a low-order geometrically exact beam model, coupled to potential flow, unsteady
thin airfoil theory. The resulting low-order aeroelastic model captures the impact of geometrically
nonlinear effects due to wing in-flight deflections on the flutter boundary with computational effort
and robustness adequate for optimization. By integrating models of different complexity within the
optimization, the present framework can evaluate a geometrically nonlinear flutter constraint while
also accurately predicting other quantities of interest, such as cruise range and peak stress levels,
that are best evaluated by a detailed model.

The geometrically nonlinear flutter constraint is the aggregate of damping values over aeroelastic
modes and flight conditions. These damping values are computed by geometrically nonlinear
aeroelastic eigenvalue analyses conducted using the low-order model about the wing’s statically
deformed shape at each flight condition. This formulation is suited to gradient-based optimization
because it does not require the flutter boundary and is robust to mode switches and hump modes
expected in practical design optimizations [2]. To compute derivatives, the flutter constraint is
differentiated using the adjoint method to enable large-scale optimization with large numbers of
structural sizing and geometric design variables.

This framework was previously demonstrated for pure structural optimization under fixed loads,
minimizing structural mass subject to stress and flutter constraints [27]. The new contribution of
this work consists of including fully coupled static aerostructural analyses for the cruise range and
stress calculations, using a consistent geometric parameterization across the high- and low-detail
representations of the wing, and implementing the adjoint derivatives of the flutter constraint with
respect to geometric design variables.

The capabilities introduced in this work are demonstrated by conducting the first high-fidelity,
gradient-based aerostructural optimizations of a subsonic wing with respect to structural sizing
(panel thicknesses) and geometric (sweep and span) variables, subject to the geometrically nonlinear
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flutter constraint evaluated at various wing root angles of attack. These optimizations demonstrate
how in-flight deflections affect the optimized, very flexible wing design due to their impact on the
flutter onset point and mechanism.

The remainder of the paper is organized as follows: Section 2 summarizes the geometrically
nonlinear flutter constraint and its derivatives; Section 3 describes the computational framework
that implements the methodology; Section 4 presents the test case and the optimization problem;
Section 5 discusses the results; and a section of concluding remarks ends the paper.

2 Geometrically Nonlinear Flutter Constraint and Derivatives

The methodology to include a geometrically nonlinear flutter constraint into a high-fidelity
gradient-based aerostructural optimization is presented here for an isolated wing with no loss in
generality. The optimization integrates two wing models: (1) a detailed model composed of built-up
FEM coupled to RANS CFD providing the cruise range and the stress constraints; and (2) a
low-order model composed of a beam representation of the built-up FEM coupled to potential flow
unsteady thin airfoil theory providing the geometrically nonlinear flutter constraint. Integrating
such models enables accurate prediction of drag and peak stress levels in realistic wings while
computing the geometrically nonlinear flutter constraint with accuracy, computational effort, and
robustness suitable for optimization.

The detailed and low-order models are linked by a consistent geometric parameterization and
by a computationally inexpensive structural model order reduction that extracts equivalent beam
properties from the built-up FEM at each optimization step. The geometric parameterization and
the model order reduction are differentiated to efficiently compute the total derivatives of the flutter
constraint using the adjoint method.

Because this paper focuses on subsonic flutter boundaries, the flutter analysis neglects transonic
effects. The potential flow model used in the flutter analysis could be replaced with a low-order
transonic aerodynamic model [28]) if appropriately parameterized to handle geometric updates and
the related derivatives.

2.1 Model Condensation and Flutter Analysis

Figure 1 shows the process for evaluating the geometrically nonlinear flutter constraint, starting
from a built-up FEM of the wing. The blue modules were added or extended in this work to optimize
with geometric design variables. This section contains a high-level description of the analysis process.
More detailed descriptions can be found in previous work [22, 27, 29, 30]

The process begins with the design variables, listed in the vector x ∈ RNx , which can be
separated into structural sizing variables, xstruct, and the newly added geometric variables, xgeo.
These design variables define the high-fidelity built-up FEM of the wingbox, whose nodal coordinates
are referred to as p.

The flutter constraint is computed on a low-order beam representation of the wing that follows
the geometrically exact, strain-based formulation of Su and Cesnik [31]. In this formulation, the
beam model is defined by its inertia and stiffness distributions associated with a user-specified
reference axis close to the shear axis. The inertia distributions consist of constitutive properties
that relate the beam generalized forces to the corresponding generalized velocities; the equivalent
stiffness distributions consist of constitutive properties that relate the beam generalized forces to
the generalized strains. The inertia and stiffness distributions are derived from the built-up FEM at
each optimization using a previously developed model order reduction technique [29, 30]. They are
referred to as equivalent beam distributions in the following.
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Figure 1: Geometrically nonlinear flutter constraint evaluation process.

The equivalent inertia distributions are given by a set of rigid-body elements with masses m̂,
offsets δ̂, and inertia tensors Î at the user-specified beam reference axis nodes, which have with
coordinates p̂. These rigid-body elements are computed starting from a set of nodal masses m
associated with the built-up FEM nodes along with their offsets δ and inertia tensors I about the
points δ + p.

The masses of the built-up FEM nodes are extracted from its lumped mass matrix, Ml, computed
using the Hinton, Rock and Zienkiewicz (HRZ) method [32]. By definition, the mass lumping
procedure computes concentrated masses at the built-up FEM nodes that approximate the consistent
mass matrix, the offsets of these masses from the FEM nodes, δ, are therefore zero. The mass
lumping process also computes lumped rotational inertias, Ixx,Iyy,Izz, for each node, but in
practice, these have negligible effects on the condensation accuracy and are thus ignored. Non-
structural point masses are added as additional masses with non-zero offsets and inertia tensors
from the built-up FEM nodes, which are held constant during optimization.

The equivalent stiffness distributions of the beam model are computed through an identification
process based on six linear static solutions of the built-up FEM under six independent tip loads
(three independent forces and moments). Displacements and rotations at the beam reference axis
nodes for each static solution, denoted by ûi (i = 1, . . . , 6), are extracted using interpolation
elements (akin to Nastran RBE3 elements) whose dependent nodes coincide with the beam reference
axis nodes.

The stiffness condensation process uses these displacements, the beam node locations, and the
tip load values to compute the equivalent stiffness properties for each beam element, which are
assembled into the vector k̂. The beam formulation used in this work uses strains associated with
axial, torsional, and bending deformations as the independent degrees of freedom. This requires
identifying a 4× 4 stiffness matrix per beam element, where the elements are the stiffness constants
associated with axial, torsion, and bending strains along with the corresponding cross-coupling
terms. These quantities are defined in the beam local coordinate system and do not need to be
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updated with structural deflections [31]. This is because, in a strain-based beam formulation,
the stiffness matrix comes from the beam stress-strain constitutive relation, which is materially
linear. The geometric stiffening in typical displacement-based formulation is embedded in the
geometrically nonlinear strain-based formulation with no requirement for beam stiffness matrix
updates. Thus, the equivalent stiffness distributions are computed on the built-up FEM in its
unstressed configuration and accurately capture its behavior under large deflections, provided the
structure does not experience significant cross-sectional warping or localized buckling, which cannot
be captured by a beam model identified in the undeformed shape [33]. Riso and Cesnik [34] compared
results from a wing built-up FEM and its beam representation based on this approach, showing
excellent agreement for vertical tip deflections up to 40% semispan.

After computing the inertial properties, m̂, δ̂, Î, stiffness properties, k̂, and node coordinates, p̂,
the beam model associated with the built-up FEM at a given optimization step is fully defined. The
beam model is coupled to a two-dimensional aerodynamic model based on the potential flow unsteady
thin airfoil theory of Peters et al. [35] to obtain the corresponding low-order aeroelastic model
for the geometrically nonlinear flutter constraint. The methodology can be applied to aeroelastic
models based on other types of beam formulations or unsteady aerodynamic models.

The flutter constraint is computed by a geometrically nonlinear process to account for the impact
of wing in-flight deflections. Consider a nonlinear aeroelastic system governed by

ẏ = f(y(c,x), c,x), (1)

where y is the Ny × 1 state vector and c is the Nc × 1 vector of parameters that identify a point in
the flight envelope, such as load factor, root angle of attack, Mach number, or dynamic pressure.
The flutter constraint for a given design x is assessed considering Ns flight envelope points ci of
interest for the stability (flutter) analysis (i = 1, . . . , Ns). The choice of the flight conditions is
problem dependent and must ensure the range of operating conditions of interest is sampled with
sufficient refinement to capture critical instability mechanisms, including hump modes.

The first step in the flutter analysis process is to compute the equilibrium state yei(x) := ye(ci,x)
associated with the flight envelope point ci by solving

f(yei(x), ci,x) = 0 (2)

The small-amplitude dynamics about the equilibrium state yei(x) is governed by

∆ẏ = Ai ∆y (3)

where ∆y := y − yei is the N × 1 state perturbation vector and

Ai = Ai(x) :=
∂f(y(c,x), c,x)

∂y


y(c,x)=yei (x), c=ci

(4)

is the Ny×Ny Jacobian matrix of the system (1) with respect to the state vector y at the equilibrium
state yei .

The eigenvalues of Ai(x) are denoted by σik(x) := gik(x)+jωik(x) (k = 1, . . . , Ny), where gik(x)
is the damping associated with the kth mode at the ith equilibrium state, ωik(x) the corresponding
angular frequency, and j the imaginary unit. The equilibrium state associated with the ith flight
envelope point is stable if the damping values gik are all negative. This requirement translates to
the constraints:

g′ik(x) ≤ 0, g′ik(x) := gik(x)−Gi
∀ k = 1, . . . , Ny

∀ i = 1, . . . , Ns
(5)
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The quantity Gi = G(ci) in Eq. (5) is the value of a damping bounding curve at the ith flight
envelope point. A negative value of the bounding curve helps the optimizer produce a more robust
design by requiring a residual damping margin when the flutter constraint is active [19]. This
approach can prevent instabilities (such as hump-mode instabilities) that the constraint may miss
due to insufficient sampling of the operating envelope (e.g., speed range). A positive value of the
bounding curve avoids constraint violations due to marginally stable modes that are not of practical
concern because they are stabilized by unmodeled damping sources.

The constraints (5) are reduced to a scalar value using two stages of Kreisselmeier–Steinhauser
(KS) aggregation [36–38] to enable efficient derivative computation using the adjoint method, which
is necessary to tackle large-scale optimization problems with many design variables. The damping
values are first aggregated over all modes at each flight point, giving the values g′, which are then
aggregated over all flight points to give the final flutter constraint value:

KSflutter(x) := g′max(x) +
1

ρKS
ln

[
Ns∑
i=1

eρKS(g′i(x)−g′max(x))

]
≤ 0 (6)

The KS aggregation parameter, ρKS, must be carefully selected. Smaller values of ρKS yield more
conservative designs. This may help ensure the optimized design is flutter-free even if the operating
envelope is not sufficiently sampled to capture instability mechanisms associated with hump modes.
Larger values represent the actual constraints more accurately but make optimization more difficult.
The choice of the KS aggregation parameter is problem dependent.

The geometrically nonlinear flutter constraint, based on a set of aeroelastic analyses about the
local equilibrium states at different flight conditions, captures the impact of in-flight deflections on
the flutter boundary and critical mechanisms. However, this constraint is insufficient to capture
other aeroelastic phenomena, such as limit-cycle oscillations, which require fully nonlinear dynamic
calculations that are beyond the scope of this paper.

2.2 Geometric Parameterization

The geometry parameterization approach added to the framework in this work uses the free-form
deformation (FFD) approach. This approach embeds the wingbox built-up and beam model nodes
in a volume defined by a set of control points. Deformations at the control points are then smoothly
mapped to the embedded points using spline-based interpolation. In this way, both the detailed
wingbox and low-order beam models are deformed consistently and the dependent RBE3 nodes
in the wingbox FEM remain coincident with the beam axis nodes (see Figure 2), which is critical
for the condensation process. Additionally, the derivatives of the embedded points’ coordinates
with respect to the control point deformations can be computed quickly and accurately because the
mapping is analytic [39].

While the geometry of the wingbox built-up FEM is defined by node coordinates, the low-order
aeroelastic model requires the coordinates of the beam reference axis nodes p̂. It also requires the
following derived information [4]: aerodynamic chord lengths, jig twist angles, and beam reference
axis offsets from the wing leading edge. For a proof-of-concept of the methodology in this work, the
chord, twist, and reference axis offsets are fixed, focusing on geometric changes that only alter the
reference axis of the wing.

2.3 Flutter Constraint Derivatives

Because the flutter constraint involves solving a large system of implicit equations (the 6 built-up
FEM load cases required for the stiffness condensation), we use the adjoint method to efficiently
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(a) Original geometry. (b) Reducing span. (c) Sweeping backward.

Figure 2: The FFD approach consistently maps deformations from the control points (red nodes) to both the built-up
wingbox and low-order beam models.

compute the derivative of the flutter constraint with respect to an arbitrary number of design
variables [40, Sec. 6.7]. Similarly to Ref. [27], where derivatives were taken with respect to structural
variables, the total derivative with respect to geometric design variables is

dKSflutter

dxgeo
=
∂KSflutter

∂xgeo
−

6∑
i=1

ψT
i

[
∂ri
∂xgeo

]
, (7)

where ri and ui are the residuals and states of the ith built-up FEM structural analysis, and the
adjoint variables ψi are computed by solving[

∂ri
∂ui

]T

ψi =

[
∂KSflutter

∂ui

]T

(8)

Equation (8) is the same adjoint system solved in Jonsson et al. [27] because the only partial
derivatives involved are with respect to the structural state variables ui. The ∂ri/∂xgeo term in
Eq. (7) is provided by the structural solver used in this work.

The new derivatives needed in Eq. (7) are contained in the explicit partial derivative term:

∂KSflutter

∂xgeo
=
∂KSflutter

∂g′
∂g′

∂xgeo

=
∂KSflutter

∂g′

[
∂g′

∂p̂

∂p̂

∂xgeo
+
∂g′

∂k̂

∂k̂

∂p̂

∂p̂

∂xgeo

+
∂g′

∂m̂

(
∂m̂

∂m

∂m

∂xgeo
+
∂m̂

∂p̂

∂p̂

∂xgeo
+
∂m̂

∂p

∂p

∂xgeo

)
+
∂g′

∂δ̂

(
∂δ̂

∂m

∂m

∂xgeo
+
∂δ̂

∂p̂

∂p̂

∂xgeo
+
∂δ̂

∂p

∂p

∂xgeo

)

+
∂g′

∂Î

(
∂Î
∂m

∂m

∂xgeo
+
∂Î
∂p̂

∂p̂

∂xgeo
+
∂Î
∂p

∂p

∂xgeo

)]
(9)
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This can be simplified by noting that ∂m̂/∂p̂ = ∂m̂/∂p = 0 as the connectivity between the
built-up FEM and the beam nodes is fixed during optimization. Furthermore, ∂Î/∂p̂ = 0 since Î
represents the inertia tensors about the local center of mass, not the reference axis nodes.

Removing these terms and grouping by remaining terms with a dependence on the reference-axis
coordinates, p̂, and the built-up FEM node coordinates, p, yields

∂KSflutter

∂xgeo
=
∂KSflutter

∂g′

{(
∂g′

∂p̂
+
∂g′

∂k̂

∂k̂

∂p̂
+
∂g′

∂δ̂

∂δ̂

∂p̂

)
∂p̂

∂xgeo

+

[
∂g′

∂δ̂

∂δ̂

∂p
+
∂g′

∂Î
∂Î
∂p

+

(
∂g′

∂m̂

∂m̂

∂m
+
∂g′

∂δ̂

∂δ̂

∂m
+
∂g′

∂Î
∂Î
∂m

)
∂m

∂p

]
∂p

∂xgeo

}
(10)

The final term in Eq. (10) involves ∂m/∂p, which requires the derivative of the built-up FEM
mass matrix with respect to the built-up FEM nodal coordinates. If computed fully, the term would
be an excessively large 3D tensor, even if stored in a sparse format. However, these terms can be
rearranged for a significantly more efficient evaluation. The vector of lumped nodal masses, m, can
be written as

m = QMD = QMle, (11)

where Ml is the full 6N × 6N lumped mass matrix, e is a 6N × 1 vector of ones, that extracts the
diagonal of Ml into the 6N × 1 vector MD, and Q is a N × 6N matrix that extracts every 6th
entry of MD to form the N × 1 vector m. Using this definition gives:

∂KSflutter

∂g′

(
∂g′

∂m̂

∂m̂

∂m
+
∂g′

∂δ̂

∂δ̂

∂m
+
∂g′

∂Î
∂Î
∂m

)
∂m

∂p

∂p

∂xgeo
=
∂KSflutter

∂m

∂m

∂p

∂p

∂xgeo

=
∂KSflutter

∂m
Q
∂Ml

∂p
e
∂p

∂xgeo

(12)

The derivative involving the lumped mass matrix is now part of a vector-matrix-vector product,
φT (∂Ml/∂p)θ, where φT = ∂KSflutter/∂m Q1 and θ = e. This product can then be assembled
efficiently on an element-by-element basis by the finite element solver without forming the full
lumped mass matrix derivative.

For clarity, the individual terms from Equation 10 are shown in Table 1, grouped by the module
used to compute them.

3 Computational Framework

This section describes the computational tools used to implement the methodology described in
Section 2.

3.1 High-Fidelity Structural and Aerostructural Analysis

The presented flutter analysis framework requires only a detailed structural solver. However,
this work considers optimizations that rely on both the flutter analysis and high-fidelity static
aerostructural analyses in cruise and maneuver conditions. These analyses are performed using the
MDO for Aircraft Configurations with High fidelity (MACH) framework [41].

1Note that the matrix Q is never explicitly formed. It’s action is simply to expand the entries of ∂KSflutter/∂m
into every 6th entry of a new larger vector.
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Table 1: Partial derivative terms from Equation (10), grouped by the module that computes them.

Module Terms computed

Damping aggregation ∂KSflutter
∂g′

Aeroelastic solver ∂g′

∂p̂ ,
∂g′

∂k̂
, ∂g

′

∂m̂ ,
∂g′

∂δ̂
, ∂g

′

∂Î

Model reduction ∂k̂
∂p̂ ,

∂δ̂
∂p̂ ,

∂δ̂
∂p ,

∂Î
∂p ,

∂m̂
∂m ,

∂δ̂
∂m ,

∂Î
∂m

Structural solver φT ∂Ml
∂p θ

Geometry parameterization ∂p
∂xgeo

, ∂p̂
∂xgeo

The structural solver used in MACH is the Toolkit for the Analysis of Composite Structures
(TACS) [42]2, an open-source parallel finite element solver that handles poorly conditioned problems
common in thin-walled aircraft structures. For such cases, the stiffness matrix condition numbers may
exceed O(109), but TACS can solve these poorly conditioned problems using a Schur-complement-
based parallel direct solver. Derivatives of structural functions of interest with respect to structural
and geometric design variables are computed efficiently using the adjoint method [42].

The aerodynamic loading is provided by the open-source CFD solver ADflow, which is a parallel,
finite-volume, cell-centered, multiblock solver with discrete adjoint derivative computation [43].3

ADflow solves the steady Reynolds averaged Navier–Stokes (RANS) equations with the one-equation
Spalart–Allmaras turbulence model, using an approximate Newton–Krylov method [44].

The nonlinear aerostructural equations are solved using a block Gauss–Seidel approach, including
an Aitken acceleration, and the linear adjoint equations are solved using a coupled Newton–Krylov
approach [41].

The FFD geometry parameterization is provided by the open-source package pyGeo4 [39]. Once
the CFD aerodynamic surface is deformed, either due to design changes or structural deformation, the
volume mesh is updated using a robust inverse distance warping scheme [45], using the open-source
package IDWarp.5

3.2 Low-Order Aeroelastic Framework

The geometrically nonlinear flutter analyses are conducted in the University of Michigan’s
Nonlinear Aeroelastic Simulation Toolbox (UM/NAST) [4], a low-order multidisciplinary framework
for simulating very flexible wings and complete aircraft. UM/NAST uses a strain-based geometrically
exact beam formulation to represent aircraft components (such as wing and fuselage) undergoing
structural deflections and rigid-body motions [31]. Aerodynamic loads can be computed using
multiple options, such as the potential flow, unsteady thin airfoil theory of Peters et al. [35] used in
this work. Compressibility effects, sweep, and tip losses are introduced using analytical relations.

The geometrically nonlinear flutter analysis at a given design iteration starts by computing the
nonlinear equilibrium states of the system at the flight conditions of interest. Next, the equations of
motion are linearized about such equilibrium states, which gives a state-space linearized model for
each flight condition. The eigenvalues and eigenvectors (aeroelastic modes) of each full-order state-

2https://github.com/smdogroup/tacs
3https://github.com/mdolab/adflow
4https://github.com/mdolab/pygeo
5https://github.com/mdolab/idwarp
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space matrix are obtained using a standard eigenvalue analysis. Finally, the eigenvalues are used for
evaluating the flutter constraint or post-processed for analysis purposes. The flutter constraint and
its partial derivatives with respect to the low-order model inputs (k̂, δ̂, m̂, p̂) are evaluated by an
in-house developed OpenMDAO [46]6 wrapper that couples the UM/NAST component with the
rest of the framework.

3.3 Model Order Reduction

Evaluating the geometrically nonlinear flutter constraint requires reducing the detailed model at
a given optimization iteration to a low-order aeroelastic model in UM/NAST. The equivalent beam
distributions of the TACS built-up FEM are computed using the University of Michigan’s Enhanced
FEM2Stick (UM/EF2S) code [29, 30]. The outputs from UM/EF2S are used to create the beam
structural model for the UM/NAST geometrically nonlinear flutter constraint and to compute its
derivatives with respect to the equivalent beam distributions.

The geometry of the UM/NAST beam reference axis is obtained from the FFD deformation
at each optimization step, while chord, twist, reference axis offset from the leading edge, and
airfoil properties are fixed. The airfoil aerodynamics is described using a zero-thickness, flat-plate
model in unsteady subsonic potential flow, with compressibility effects accounted for using the
Prandtl–Glauert correction.

3.4 Optimization Algorithm

The optimization algorithm is SNOPT (Sparse Nonlinear OPTimizer) [47], a gradient-based
optimizer that implements a sequential quadratic programming (SQP) algorithm. SNOPT uses
an augmented Lagrangian merit function; the Hessian of the Lagrangian is approximated using a
quasi-Newton approach suitable for optimization problems with many sparse nonlinear constraints.
The interface with SNOPT is handled by pyOptSparse7 [48], an implementation of pyOpt [49]
that eases defining large sparse Jacobians crucial to the performance of large scale optimizers like
SNOPT.

4 Aerostructural Optimization

The methodology is now demonstrated by performing a series of two-point aerostructural
optimizations both with and without the presented geometrically nonlinear flutter constraint.
Section 4.1 describes the wing model being optimized, and Section 4.2 describes the formulation of
the optimization problem.

4.1 Wing Model

Figure 3 shows the baseline wing model that acts as the starting point for all optimizations.
The wing consists of a rectangular, untwisted wing with a unit chord, an aspect ratio of 12, and a
NACA 0012 aerodynamic cross-section. The wingbox spans from 15% to 65% of the aerodynamic
chord and uses Aluminium 2024-T3 properties8 (E = 73.1 GPa, ν = 0.33, σY = 345 MPa, ρ =
2780 kg/m3). The wingbox mesh consists of 21,000 second-order MITC4 shell elements, totaling
123,120 degrees of freedom (DOF). The baseline thickness distribution (Figure 3(a)) comes from a
structural pre-optimization under fixed 2.5-g aerodynamic loads, without the flutter constraint or

6https://github.com/OpenMDAO/OpenMDAO
7https://github.com/mdolab/pyoptsparse
8asm.matweb.com/search/SpecificMaterial.asp?bassnum=ma2024t3
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(a) Baseline built-up FEM showing panel thicknesses,
nonstructural masses, and wing outer mold line.

(b) Baseline wing built-up FEM and beam structural
models.

Figure 3: Baseline wing model.

geometric variables, resulting in a mass of 68.5 kg. Non-structural masses are added to the wing
to ensure it flutters within a dynamic pressure range that results in large but not excessive static
deflections and where the subsonic flow assumption holds. Three 15 kg point masses are added along
the trailing edge at each third of the semispan, and a mass of 37.5 kg is distributed on the lower
skin to model fuel. These non-structural masses are also included as a static inertial load in the
aerostructural analyses.

To evaluate the geometrically nonlinear flutter constraint, the TACS wingbox built-up FEM
is reduced to an equivalent beam model in UM/NAST at each optimization step. The beam
reference axis is at 41% of the aerodynamic chord and is discretized in eight reference nodes (seven
three-node beam elements). Each reference node is connected to the leading and trailing edges
of its corresponding cross-section by a TACS RBE3 element. Figure 3(b) shows the TACS and
UM/NAST models overlapped.

The equivalent beam model is coupled to a potential flow, unsteady thin airfoil model [35]
with zero-thickness, flat-plate cross-sectional properties. The resulting low-order aeroelastic model
provides the geometrically nonlinear flutter constraint, while the other functions of interest come from
the detailed aerostructural model. The geometrically nonlinear flutter analysis accounts for subsonic
compressibility effects using the Prandtl–Glauert correction. Three-dimensional aerodynamic effects
are not considered, but they can be added using tip loss factors or variable airfoil properties along
the span derived from the detailed model. Transonic effects are beyond the scope of this paper. They
could be included by replacing the potential flow model with a low-order transonic aerodynamic
model [28], if parametrized and differentiated to enable geometric updates.

The aerostructural analyses use a structured multiblock CFD mesh (Figure 4). The wing surface
contains 44 cells along the chord, 66 along the span, and 8 across the trailing edge. This surface
mesh is extruded to 100 chord lengths from the wing using the hyperbolic mesh generation tool
pyHyp9. The first layer height is 2.7734× 10−6 m, resulting in a y+ value of approximately 1 at the
maximum studied Reynolds number of 12.7× 106.
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(a) Farfield boundary (b) Wing surface and symmetry boundary

(c) Wing tip surface (d) Wing root section

Figure 4: Baseline wing CFD aerodynamic model.

Table 2: Optimization formulation.

Function/variable Description Quantity

maximize R Cruise range
with respect to t Skin/spar/rib thicknesses 76

xSpan Wing semispan scaling 1
xSweep Wing sweep 1
αi Root angle of attack at ith flight condition 2

Total 80

subject to KSflutter ≤ 0 KS aggregate of damping values 4
1.5KSstress ≤ 1 KS aggregates of 2.5 g stresses 4
|tskin, i − tskin, i+1| ≤ 1 mm Skin adjacency constraints 28
|tspar, i − tspar, i+1| ≤ 1.5 mm Spar adjacency constraints 28
Li = niMTOW Lift constraint at ith flight condition 2

Total 66

4.2 Optimization Problem

The optimization problem is to maximize the wing’s cruise range, subject to maneuver stress and
flutter constraints. The formal problem definition is detailed in Table 2. The cruise and maneuver
conditions in Table 3 for the detailed aerostructural analyses have a Mach number of 0.5. The

9github.com/mdolab/pyhyp

13

github.com/mdolab/pyhyp


Table 3: Flight conditions for optimization.

Condition Speed (m/s) Mach Load factor (g) Altitude (m) Reynolds

Cruise 149.7 0.5 1 10000 4.38× 106

Maneuver 170.1 0.5 2.5 0 12.0× 106

Flutter 10–180 0.029–0.529 – 0 12.7× 106

cruise altitude is 10 000 m while the maneuver is at sea level, with air properties based on standard
atmospheric values. The geometrically nonlinear flutter constraint is also evaluated for sea-level
conditions at 20 flight speeds between 10–180 m/s, within the applicability of subsonic potential
flow assumptions.

This speed sampling is appropriate for this problem, which aims to demonstrate the methodology
rather than conducting a practical design optimization. In a production environment, the speed range
(or other parameter range) should be sampled finely enough that the geometrically nonlinear flutter
constraint captures all critical instability mechanisms, including hump modes. However, too fine a
sampling increases the computational burden of evaluating the constraint. This is critical for the
proposed geometrically nonlinear formulation, which solves a nonlinear static aeroelastic equilibrium
problem followed by linearization at each flight condition. The appropriate sampling is problem
dependent and based on the trade-off of constraint accuracy and computational burden. Constraint
parameters such as the bounding curve and the KS aggregation parameter help compensate for
instability mechanisms missed with a coarser sampling of the operating envelope, such as hump
modes. For instance, specifying a negative bounding curve, decreasing the KS aggregation parameter,
or both, make the flutter constraint more conservative, increasing the optimized design’s robustness.
These approaches can address potentially missed instability mechanisms and other unmodeled
effects.

Demonstrating the methodology requires a multidisciplinary objective that combines aerodynamic
and structural performance. The optimization aims to maximize cruise range, computed using the
Breguet range equation:

R =
V

cT

CL
CD

ln

(
Minit

Minit −Mfuel

)
(13)

In this equation, R is the flight range, V the cruise speed, cT the thrust-specific fuel consumption
ratio (0.5 kg/h) and CL, CD the cruise lift and drag coefficients. The initial cruise mass Minit

consists of a fixed 400 kg plus the wingbox structural mass and the fuel mass of 37.5 kg. These three
masses are all half of the full-vehicle values.

The design variables are 76 wingbox panel thicknesses, span, and sweep. The angles of attack
for the cruise and maneuver flight conditions are also design variables to ensure the lift matches the
load factor. The primary constraints are the stress and flutter constraints. The von Mises stresses
in the wingbox under the maneuver loads are KS-aggregated into four constraint values, one each
for the ribs, spars, upper skin, and lower skin panels. These values are constrained to lie below the
material yield strength by a safety factor of 1.5.

The flutter damping values are first aggregated across all modes at each flight condition and
then aggregated across all flight conditions. This gives a scalar constraint value that closely but
smoothly approximates the maximum damping value across all flutter flight conditions, which is
constrained to lie below a threshold of 0.12 rad/s.

To produce a realistic structural design, the optimization includes linear adjacency constraints.
For the upper and lower skins, the thickness of adjacent panels must be within 1 mm of one another,
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while for the spar panels, the limit is 1.5 mm. Finally, the lift produced in the cruise and maneuver
flight conditions must equal half the maximum take-off weight (MTOW) (1280 kg) multiplied by
the desired load factor.

To investigate how geometric variables suppress flutter, optimizations are solved with only span,
only sweep, or both span and sweep variables, including the structural variables in all cases. To
highlight the importance on geometrically nonlinear effects on the flutter constraint and optimal
design, the wing is optimized multiple times with the flutter constraint computed at a different fixed
wing root angle of attack between 0.5 and 6◦. Finally, an optimization without the flutter constraint
for each parameterization serves as a reference to judge the impact of the flutter constraint.

Although the discussion of the results herein focuses on the impact of the flutter constraint root
angle of attack on the optimal design, this is merely a proxy for the in-flight deformation level of
the wing, which is the true driver of the geometric nonlinearity. In a more realistic design problem,
the deformations would be dictated by the load factor enforced for each flutter flight condition and
by the resulting trim parameters. However, to reduce the complexity of this example problem, we
use the root angle of attack to control the deformation level.

Each optimization runs on 72 Intel Xeon Gold 6154 processor cores. The cruise and maneuver
aerostructural analyses and adjoint derivative evaluations use 26 and 42 cores, respectively. The
flutter flight points are split across separate instances of MACH-UM/NAST on the remaining
four processors, each performing its aggregation, resulting in the four distinct flutter constraint
values (Table 2). This splitting is done evenly such that one instance computes the flutter damping
aggregate over the first five points in the sweep, another in the next five, and so on. The optimizations
are terminated when SNOPT reaches a feasibility (maximum constraint violation) below 10−5 and
an optimality (Lagrangian gradient norm) below 10−4, a reduction of three orders of magnitude
from the initial design. This optimization requires about 50 major iterations and 4 hours of wall
time.

5 Results

5.1 Derivative Verification

The analytic geometric derivatives in Section 2.3 are verified against finite-difference approxima-
tions. Table 4 compares the analytic derivatives with central-difference approximations computed
by perturbing the span and sweep design variables by ±10−4. The values are computed with the
baseline wing, using 10 flight speeds over the same range used in the optimization problem, at an
root angle of attack of 2◦. The most significant difference between analytic and finite difference
values is 0.00108%.

Table 4: Flutter constraint derivatives with respect to the geometric variables dKSflutter/dxgeo.

dKSflutter/dxSpan dKSflutter/dxSweep

Analytic 33.09999319 −5.25644508
Finite-difference 33.09997429 −5.25650208

∆ (%) 6×10−5 −1.08×10−3
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5.2 Optimization Results

Before discussing the optimized designs, we discuss the flutter mechanisms of the wings. Figure 5
shows the root loci of the wings optimized for each case and root angle of attack, α. In all cases,
the wings optimized without the flutter constraint are flutter critical. In almost all cases, the flutter
mode has the second-lowest frequency (referred to as mode 2 herein). For the undeformed wing in a
vacuum, mode 2 is the first in-plane bending mode. As the wing deflects, this mode couples with
torsion due to geometrically nonlinear bending kinematics10. With the addition of aerodynamics,
torsion couples with out-of-plane bending, leading to a 3-DOF flutter mechanism that involves
in-plane bending, torsion, and out-of-plane bending motions, as previously discussed by Hodges and
Dowell [50], Patil et al. [3], and Cestino et al. [23], among others.

Because the in-plane bending and torsion motions only couple when the wing deflects, the resulting
flutter mechanism is not captured by a geometrically linear flutter constraint that only considers
the undeformed wing. Increasing the root angle of attack leads to larger in-flight deformations,
strengthening the coupling, causing mode 2 to flutter at a lower speed and stray further into the
right half-plane of the root locus.

The optimizer has two options for suppressing this flutter mode. The first is to increase the
wing’s torsional and in-plane bending stiffness by reinforcing the wingbox spars. The other is
to increase the out-of-plane bending stiffness, either by thickening the upper and lower skins or
reducing the span, in order to decrease in-flight deformations and weaken the geometrically nonlinear
coupling.

The only cases where mode 2 is not the critical flutter mode are in the wings optimized with
either only sweep or with span and sweep at the lowest root angle of attack of 0.5◦. At this low
root angle of attack, with the wash-out introduced by backward sweep, in-flight deflections are low
enough that the geometrically nonlinear coupling that causes mode 2 to flutter is not significant,
and mode 3 is the critical flutter mode. In the undeformed wing, mode 3 is a coupled out-of-plane
bending and torsion mode. This bending-torsion coupling is exacerbated by the backward sweep,
explaining why this mode is flutter critical in the wings optimized with a sweep variable. The wing
optimized with only a span variable remains straight; thus, mode 2 is always the critical flutter
mode.

Figure 6 presents the strain mode shapes computed by UM/NAST for the wing optimized with
span and sweep variables and without a flutter constraint. The plots show the normal vibration
modes for the undeformed wing and the aeroelastic modes at the flutter speed for each root angle
of attack. Note that the aeroelastic eigenvectors are complex, and thus the magnitudes of the
complex strain values are plotted. The central column of plots demonstrates that mode 2 originates
as a purely in-plane bending mode in the undeformed structure but gains significant torsion and
out-of-plane bending components as in-flight deflections increase, leading to a flutter mode that
involves in-plane, torsion, and out-of-plane bending. Notice that mode 1 and mode 3 do not develop
a significant in-plane bending component, and remain primarily a mix of torsion and out-of-plane
bending.

Figure 7 further demonstrates the role of in-plane bending in the 3-DOF flutter mechanism.
The figure shows results of the flutter analyses from Figure 5(e) repeated with in-plane bending
removed. To compute these, the aeroelastic system is linearized around the same static deformed
state (including in-plane bending deformations) at each flight point, but the rows and columns
corresponding to in-plane bending strain and strain rate DOFs are removed from the aeroelastic
state-space matrix A (Eq. (3)) before its eigenvalues are computed. The two plots show that the
flutter mechanism associated with mode 2 disappears when in-plane bending is restrained, proving

10Figure 9(c) by Cestino et al. [23] illustrates this effect.
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Figure 5: Root loci for all optimized wings.

that in-plane bending is critical to the 3-DOF flutter mechanism.
Figure 8 shows the structural models of the optimized wings, displaying the maneuver stress

and structural thickness distributions. The designs optimized with the flutter constraint have
shorter wingspans and thicker spars. Figure 9 shows the optimized cruise range, lift-to-drag ratio,
structural mass, semispan, and sweep angle of each optimized wing for the root angle of attack
where the flutter constraint was computed. Also shown are reference values of these metrics for
the wings optimized without a flutter constraint. Finally, to show the differences across the 3
geometric parameterizations more clearly, Figure 10 plots the same data with the values for all
parameterizations on the same axes.
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Figure 6: Breakdown of the first three structural and aeroelastic strain modes computed by UM/NAST for the
wing optimized without a flutter constraint. Mode 2 transitions from a pure in-plane bending mode to a combination
of in-plane bending, out-of-plane bending, and torsion DOF (to become the flutter mode) as the level of static
deformation increases. Modes 1 and 3 are less affected by in-flight deformations and remain as a coupled out-of-plane
bending and torsion DOF.

The primary trade-off in the optimization is between suppressing flutter by reducing the span or
increasing structural thicknesses, both detrimental to the cruise range. In this case, the optimizer
finds it more effective to reduce the span, sacrificing drag while maintaining a lower structural mass,
rather than retaining a higher span resulting in lower drag but higher structural mass. This is
because reducing span increases the in-plane and out-of-plane bending stiffness for a given panel
thickness distribution.

In the span-only cases, at the lowest root angle of attack of 0.5◦, the optimizer achieves the
same range as without the flutter constraint but with a different design. The wingspan is reduced
by 1.6%, sacrificing drag to satisfy the flutter constraint, but the structural mass is lower, which
counteracts the loss in aerodynamic efficiency. This lower mass is not solely due to the reduced
volume of the wingbox. In the wing optimized without flutter constraint, the front spar is greatly
reinforced (see Figure 8(a)) to induce passive load alleviation; in the flutter-constrained design, this
reinforcement is reduced because of the lower bending moment resulting from the lower span. As
the root angle of attack increases, the optimized span decreases, but the wingbox mass does not. At
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Figure 7: When in-plane bending DOF are removed from the aeroelastic stability analysis, the flutter mechanism
changes, showing that in-plane bending plays a critical role in the geometrically nonlinear 3-DOF flutter mechanism.

the highest root angle of attack of 6◦, the span is 7.7% lower than for the non-flutter-constrained
design, but the structural mass is 2.1% higher. At this point, the range loss due to the flutter
constraint is a modest 2.8%.

In the cases where the optimizer can only vary the sweep, the range loss due to the flutter
constraint varies significantly more with the root angle of attack. At α = 0.5◦, the non-flutter-
constrained design is barely flutter-critical. Thus, unlike the span-only case, the optimizer satisfies
the flutter constraint with almost no design change. Comparing Figures 8(a) and 8(b) shows that the
optimizer achieves passive load alleviation through backward sweep rather than by reinforcing the
front spar. This gives a lighter wing and a range of 5248.9 km, 1.2% higher than the span-only case.
However, as the root angle of attack for the flutter constraint increases, the loss in range is more
significant. The flutter mode at higher angles of attack is mode 2, which is suppressed by reducing
in-flight deformation. Without reducing deformations by shortening the wing, the optimizer is
forced to satisfy the flutter constraint by reinforcing the wingbox. The optimized wingbox mass
increases by 45.4% at α = 6◦ resulting in a range loss of 5.9% over the non-flutter-constrained
design, and 2% over the span-only case.

When the optimizer can vary span and sweep, it reaps the benefits of both. Like the sweep-only
cases, the non-flutter-constrained wing is just flutter-critical at α = 0.5◦, and the flutter-constrained
design is almost identical to the non-flutter-constrained one. As the root angle of attack increases,
the optimizer reduces the wingspan to control in-flight deformation while keeping a lower structural
mass, as in the span-only cases. The wings optimized with span and sweep variables achieve the
same high range of 5248.9 km as the sweep-only case at α = 0.5◦ but also maintain a lower structural
mass and higher range as the root angle of attack increases, as the span-only cases did. This is
because the optimizer can meet the stress constraints while minimizing structural thickness increases
by varying sweep in addition to span.

Figures 10(e) and 10(f) compare the masses of the wingbox skins and spars, respectively. These
trends demonstrate how the optimizer’s method for suppressing the mode 2 flutter mechanism
changes at different levels of in-flight deformation in the span-only and span + sweep cases. For α =
0.5-2◦, the optimizer appears to favor increasing the torsional and in-plane bending stiffness, with
the mass of the spars increasing, even as the skin and total wingbox masses decrease. Above α =
2◦, the optimizer increases the mass of the wingbox skins and decreases the mass of the spars. This
suggests a greater focus on limiting in-flight deformations to reduce the strength of the in-plane
bending torsion coupling that drives the 3-DOF flutter mechanism.
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Geometrically nonlinear effects play a pivotal role in the outcome of the presented optimizations.
For low in-flight deformations, optimizing the wing with only a sweep geometric design variable
results in a cruise range 1.2% higher than with only span and equal to the range achieved without
considering flutter. For the highest in-flight deformations, reducing span is necessary to suppress
the geometrically nonlinear coupling of in-plane bending, out-of-plane bending, and torsion involved
in the flutter mode. This is effective at preventing flutter than maintaining a larger span while
reinforcing the wingbox. At this point, this advantage has reversed, and the wings optimized with
the span variable have a range advantage of at least 2%. The optimizer changes sweep to provide
passive load alleviation, while it relies on span and (to a lesser extent) on thickness for meeting the
flutter constraint.
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(a) Span only (b) Sweep only (c) Span and sweep

Figure 8: Selected optimized wings showing the normalized stress (left), and the structural sizing (right). The thickness difference plotted on the wings optimized
with the flutter constraint is relative to the wing optimized without the flutter constraint.
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Figure 9: Trends in the functions of interest for each optimized wing design.
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Figure 10: Trends in the functions of interest for each optimized wing design compared across the three geometric
parameterizations.

23



6 Concluding Remarks

If MDO is to be a practical approach for designing the energy-efficient, very flexible aircraft
of the future, modeling and constraining geometrically nonlinear flutter behaviors is critical. This
paper presented a framework incorporating a low-order geometrically nonlinear flutter constraint
into high-fidelity, gradient-based aerostructural optimization problems. The framework uses a
built-up wingbox FEM coupled with RANS CFD to accurately predict quantities that require
detailed models, such as cruise range and peak stress levels. The built-up FEM is then reduced to a
beam representation coupled to potential-flow, thin airfoil theory to predict geometrically nonlinear
flutter onset at tractable cost for large-scale optimization.

This work extended the framework’s capabilities to include a consistent geometric parameteriza-
tion of both wing representations. The adjoint method was used to efficiently compute derivatives
of the geometrically nonlinear flutter constraint with respect to large numbers of detailed design
variables, which were verified with finite differences. The framework was demonstrated by optimizing
the structural sizing and planform geometry of a high-aspect-ratio wing to maximize its cruise
range, subject to maneuver stress and flutter constraints. The effect of the flutter constraint
on optimum designs was shown to highly depend on the in-flight wing deflections. The flutter
constraint was not limiting for low deflection levels, and the optimization results were close to those
obtained without considering flutter. At increasing angles of attack, geometrically nonlinear effects
resulted in a 3-DOF flutter mechanism due to the coupling of in-plane bending with torsion and
out-of-plane bending. The optimizer prevented this mechanism by decreasing span and increasing
wingbox thicknesses to limit deflections, leading to a loss in range of up to 5.9%. Comparing
optimized designs achieved with different planform parameterizations showed that varying sweep
and thickness results in more efficient flutter-safe designs at lower deflection levels. At the same
time, span reduction is needed to prevent flutter for higher deflection levels. This work is a step
toward bringing geometrically nonlinear flutter analyses into multidisciplinary design optimization
of practical aircraft configurations, helping enable the next generation of higher-energy-efficiency
aircraft.
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