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Abstract

Aerostructural optimization traditionally uses a single or small number of cruise conditions to
estimate the mission fuel burn objective function. In reality, a mission includes other flight segments
contributing to fuel burn, such as climbing and descent. We aim to quantify how much performance
is sacrificed by optimizing the design for a fuel burn approximation that ignores these other flight
segments and flight conditions. To do this, we compare traditional approaches to mission-based
optimization, which uses an accurate fuel burn objective computed by numerically integrating
fuel flow across the mission profile. We find that mission-based optimization offers only marginal
benefits over traditional single-point and multipoint approaches for aerostructural optimization of
a narrowbody aircraft—only 1–2% in the most extreme cases. Thus, the traditional aerostructural
optimization is acceptable, especially in cases where most fuel is burned during cruise. For the
cases where climb fuel burn is significant, we introduce a simple change to traditional fuel burn
approximation methods that allows the optimizer to find nearly all the fuel burn reduction of
mission-based optimization but at the computational cost of multipoint optimization.

Nomenclature

L = lift
W = weight
D = drag
T = thrust
γ = flight path angle (positive for climb)
R = mission or mission segment range
V = flight speed
TSFC = thrust-specific fuel consumption
Wi = initial weight in a mission or mission segment
Wf = final weight in a mission or mission segment
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1 Introduction

Quantifying the interaction between the aerodynamic performance and the structural behavior
of an aircraft wing is integral to aircraft design. It facilitates the design of wings that strike the
best balance of low weight and high aerodynamic performance—two closely-coupled and opposing
objectives. Optimization of this aerostructural problem has been thoroughly researched. Haftka
[1] was one of the first to investigate the coupled problem using low-fidelity, physics-based tools.
Kenway et al. [2] accomplished it using Reynolds-averaged Navier–Stokes (RANS) computational
fluid dynamics (CFD) and a detailed finite element analysis (FEA) model.

Early aerostructural optimizations minimized some combination of drag and structural weight [1,
3]. Replacing this objective with mission fuel burn combines drag and structural weight to mini-
mize a more practical quantity. Most fuel-minimizing aerostructural optimizations fall into one of
two categories. The first type, used in Kenway et al. [2], computes fuel burn based on the wing’s
performance at a single flight condition in cruise. This is referred to as single-point optimization.
However, this approach often results in poor performance at other flight conditions. Multipoint
aerostructural optimization, which followed single-point, addresses this by considering multiple
cruise flight conditions in the objective function [4]. Both single-point and multipoint aerostruc-
tural formulations assume that most of the fuel is burned during cruise, that is, they assume that
climb and descent fuel burn are negligible. The dominant cruise fuel burn assumption is necessary
because they estimate total fuel burn with the Bréguet range equation, which assumes that the
product of lift-to-drag ratio, airspeed, and thrust specific fuel consumption is constant throughout
the mission. Thus, they perform all analyses at cruise flight conditions to compute the lift-to-drag
ratio for the Bréguet range equation.

However, this cruise-only fuel burn calculation has been shown to differ from the actual mission
fuel burn by 30% or more for short missions where climb fuel burn makes up a significant portion
of the total mission fuel burn [5]. One way to account for this discrepancy in the climb and
descent fuel burn is to use a correction factor based on the takeoff weight [6, 7]. Similarly, set fuel
fractions could be used for non-cruise mission segments [8]. While these approaches are useful for
conceptual design, they have a critical flaw for aerostructural optimization purposes. By excluding
aerostructural analyses in climb, the optimizer does not know how subtle changes to the design
will change the climb fuel burn. In other words, no analysis is performed in the climb when these
corrections are used. This means that the optimizer could make a design change that marginally
decreases cruise fuel burn while unaware that it massively increases climb fuel burn.

Previous work recognized that single-point and multipoint optimization problem formulations
might not suit shorter missions. Liem et al. [9] identified the problem for regional jets and used
numerical mission analysis coupled with a surrogate of the aerostructural model to compute the
fuel burn objective function. Bons [10] highlighted the importance of considering climb and descent
for high-fidelity regional jet aerostructural optimization. Bons modeled the mission fuel burn using
low-fidelity approximations in climb and descent and high-fidelity analyses with the Bréguet range
equation. Including climb and descent in the optimization offered important benefits, including a
substantial drag decrease in climb and descent that is not achieved with a cruise-only Bréguet range
objective. Chau and Zingg [11] performed high-fidelity aerostructural optimization of a regional jet
and took a similar approach to Bons, using low-fidelity approximations to model mission segments
outside of cruise. Clarke et al. [12] also observed that mission analysis gives a more complete
understanding of aircraft performance than single-point formulations and accordingly used mission
analysis to compute the objective function for coupled wing and propeller optimization.

This previous work raises a question: what is the penalty on the actual mission fuel burn
caused by minimizing a single-point or multipoint fuel burn approximation based only on cruise
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flight conditions? In other words, how much would actual fuel burn decrease by using a numerically-
integrated fuel burn objective function that considers the full mission profile versus a single-point
or multipoint approximation? The answer is crucial for high-fidelity aerostructural optimizations
because it reveals how close their designs, which are optimized with the single-point and multipoint
fuel burn approximations, are to the true optimum. In theory, the approximate fuel burn should
approach the true mission fuel burn as the mission range increases and cruise fuel burn becomes
more dominant. However, particularly for short missions flown by narrowbody and regional aircraft,
when does the dominant fuel burn assumption break down? This has yet to be quantified in the
literature.

To evaluate the effectiveness of traditional fuel burn objectives, we compare them against an
actual mission fuel burn objective function. The actual mission fuel burn is computed by numer-
ically integrating fuel flow across the mission profile, satisfying force balance at each integration
point, and using a physics-based engine model. We refer to this method, which runs mission anal-
ysis in the loop, as mission-based optimization. It takes advantage of recent developments in fast
aerostructural analysis with OpenAeroStruct1 [13] and detailed, modular mission analysis with
OpenConcept2 [14]. All codes used in this work are open-source.

Mission-based optimization is not new to the field of aircraft design. However, using it for high-
fidelity aerodynamic shape and aerostructural optimizations is a relatively recent development.
Mission-based optimization has been widely used for conceptual aircraft design. NASA’s Flight
Optimization System (FLOPS) was developed in the early 1980s for this purpose [15]. Since then,
various conceptual aircraft design optimization tools incorporating mission simulation have been
developed. NASA developed LEAPS [16] to better model unconventional aircraft using physics-
based models. The Aerospace Design Lab at Stanford created SUAVE [17] to be a modular way to
design future aircraft. The MDO Lab at the University of Michigan developed OpenConcept [14],
which takes advantage of analytic gradient methods to optimize designs efficiently. The Aerospace
Systems Design Laboratory at Georgia Tech created GT-HEAT [18] to focus on propulsion system
design. These mission-based tools have been used to optimize the design of a small UAV [19], the
sizing of an electrified aircraft’s thermal management system [20, 21], and the performance of a
distributed propulsion system [22].

Incorporating CFD into mission-based optimizations is challenging because mission analysis
requires tens to hundreds of aerodynamic evaluations throughout the mission. Solving the CFD at
each point in the mission for every analysis would be prohibitively expensive. The most common
approach to enable mission-based aerodynamic shape or aerostructural optimization with CFD is
to use a surrogate of the CFD model in the mission analysis [9, 12, 23–26]. Thus, we use a similar
approach.

By comparing traditional single and multipoint approaches to mission-based optimization, we
show that optimized results from traditional approaches obtain actual mission fuel burns within
1% of the design from mission-based optimization. As expected, the advantage of mission-based
optimization over traditional methods grows as the cruise distance decreases.

When climb fuel burn makes up a significant portion of the total fuel burn, we propose using
a new objective function for high-fidelity aerostructural optimization that achieves most of the
fuel burn benefit of mission-based optimization. Unlike traditional objective functions, it includes
an analysis in climb to give the optimizer information about how design changes will affect climb
performance. It achieves most of the fuel burn benefit of mission-based optimization at a fraction
of the computational cost. The approach employs a modified Bréguet range equation, derived in

1https://github.com/mdolab/openaerostruct
2https://github.com/mdolab/openconcept
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Section 5, that accounts for nonzero flight path angles. Two sequential evaluations of the modified
equation are used to model the climb and cruise fuel burns. No analysis in descent is used because
it has little impact on the optimized design due to the comparatively small amount of fuel burned
in descent. This method achieves most of the benefits of mission-based optimization but with a
lower computational cost than the multipoint optimization.

This paper is structured as follows. Section 2 discusses the models and methods with subsections
describing OpenConcept, OpenAeroStruct, and the coupling of the two. Section 3 describes the
optimization problems. Section 4 discusses the optimization results and compares them to previous
methods. Section 5 describes our newly-proposed objective function for high-fidelity aerostructural
optimization that better incorporates the effect of the climb with minimal additional computational
cost.

2 Models and methods

The aerostructural mission analysis used in this work couples two existing codes: OpenCon-
cept for the mission analysis and OpenAeroStruct for the aerostructural model. Both codes are
open-source and built on the OpenMDAO framework [27], which enables the analysis and opti-
mization of complex systems by harnessing analytic derivatives and the MAUD framework [28].
OpenAeroStruct’s aerostructural model is incorporated into OpenConcept with a surrogate model,
which offers a speedup compared to OpenConcept calling OpenAeroStruct directly.

2.1 Mission analysis (OpenConcept)

OpenConcept is a general-purpose conceptual aircraft design toolkit [14]. At its core, it uses
numerical integrators to integrate aircraft states, such as fuel burn, over a customizable mission
profile. At each numerical integration point, it selects the correct lift coefficient and engine throttle
to balance forces. The model is solved all at once using a Newton solver that takes advantage of the
built-in analytic derivatives to converge rapidly. The toolkit can handle complexity ranging from
models with a simple parabolic drag polar and propulsion model to models using vortex lattice-
based aerodynamics, parallel hybrid engine maps, and unsteady modeling of a battery and electric
motor thermal management system [20].

The OpenConcept model in this work uses a CFM56 engine deck, which is a kriging surro-
gate of a pyCycle [29] model. OpenConcept uses OpenAeroStruct’s vortex-lattice method (VLM)
aerodynamic analysis and six-degree-of-freedom beam structural model for the aerostructural anal-
ysis. An eXtended Design Structure Matrix (XDSM) [30] of the OpenConcept mission analysis is
shown in Figure 1. OpenConcept uses the drag from the OpenAeroStruct surrogate model, the
thrust from the CFM56 engine deck, and the weight to solve for the lift and throttle needed to
achieve zero acceleration at each numerical integration point in the mission. The aircraft design
parameters, such as maximum takeoff weight and wing area, are based on the 737-800’s design.
Because OpenAeroStruct models only the wing, an estimate for the drag of the rest of the aircraft
is required. This is done by matching the fuel burn to an equivalent OpenConcept model with an
empirical parabolic drag polar of the 737-800 [31] instead of OpenAeroStruct’s. This results in a
zero lift drag coefficient of 0.0145 that is added to the drag from OpenAeroStruct. The wing weight
returned by OpenAeroStruct is added to the OpenConcept model after subtracting the initial wing
weight as estimated by Raymer [32].

The mission profile used for the results discussed in this paper is shown in Figure 2. The climb
and descent segments have a set profile, and the cruise segment is at 35,000 ft and Mach 0.78 for its
duration. The climb and descent profiles are roughly based on real-world data from similarly-sized
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Figure 1: OpenConcept’s mission analysis uses a Newton solver to converge the mission such that the acceleration
at each numerical integration point is zero.

aircraft, though they are still contrived. The cruise segment is unrealistic for the 300 nmi mission
since a lower cruise altitude would likely be chosen and is also unrealistic for longer missions because
a step climb would be used as fuel is burned. The idea behind the chosen mission profile is not to
perfectly represent a real-world mission but to provide a means for fairly comparing the different
optimization methods in a way that is scalable to an arbitrary distance. Regardless of the mission
length, the aircraft takes off at its maximum takeoff weight.
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(a) 300 nmi mission altitude profile
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(b) 300 nmi mission Mach profile
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(c) 900 nmi mission altitude profile
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(d) 900 nmi mission Mach profile

Figure 2: The mission profile consists of climb, cruise, and descent segments with the cruise at 35,000 ft and at
Mach 0.78. The cruise segment is stretched until the mission reaches the desired length.

2.2 Aerostructural analysis (OpenAeroStruct)

OpenAeroStruct [13], the aerostructural analysis component, couples a vortex lattice aerody-
namic model with a one-dimensional FEA model using six degree-of-freedom elements with ax-
ial, bending, and torsional stiffness. In this work, we use OpenAeroStruct’s wingbox model [33],
which computes the cross-sectional properties of airfoil-based wingbox cross-sections instead of
the default tubular cross-section. OpenAeroStruct uses a semi-empirical model based on flat-plate
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estimates and a form factor adjustment to account for skin friction and pressure drag. Finally, Ope-
nAeroStruct includes a wave drag estimate based on the Korn equation. While the state-of-the-art
in aerostructural optimization uses high-fidelity RANS CFD and a detailed FEA wingbox model,
that approach requires thousands of core-hours for a single aerostructural optimization. Despite the
lower fidelity, OpenAeroStruct has been shown to match closely with the higher fidelity cases [33].
The validation data from Chauhan and Martins [33] is shown in Table 1. Since it can perform
aerostructural analysis in seconds, OpenAeroStruct enables rapid mission analysis of the wing and
ultimately coupled aerostructural and mission profile optimization on a desktop computer.

OpenAeroStruct [33] High-fidelity [34] Difference

Wing structural mass (kg) 21,467.66 23,840 −10.0%
Fuel burn (kg) 96,239.07 94,037 +2.3%

Table 1: Structural weight and fuel burn of a transport aircraft’s wing optimized in OpenAeroStruct matches a
high-fidelity aerostructural optimization result to within 10% [33].

The wing used in this work, shown in Figure 3, has a simple planform defined by area, aspect
ratio, taper, and sweep. The planform area of 124.6 m2 is the only parameter that is not modified by
the optimizer. The wing also has an adjustable twist and thickness-to-chord ratio along the span.
The wingbox model’s structural sizing consists of skin and spar thicknesses that are adjustable
along the span. The skin thicknesses are the same on the top and bottom and spar the same on the
front and back. The front of the wingbox is at 10% chord, the rear is at 60% chord, and the shape is
defined by a NASA SC2-0612 airfoil (adopted from Chauhan and Martins [33]). The mesh includes
28 aerodynamic panels across the span and 3 aerodynamic panels along the chord. The structural
mesh uses the same discretization in the spanwise direction as the aerodynamic mesh. Table 2 lists
the parameters used for the wing and wingbox. The weight of the wing structure is added as a
distributed load in the finite element model, but no distributed fuel load is included. The model
does not yet include a horizontal stabilizer to trim the aircraft. Nonetheless, OpenAeroStruct
optimization results have been shown to closely match high-fidelity aerostructural optimizations
even without including a horizontal stabilizer [33].

wingb
ox

Figure 3: The baseline wing uses a simple planform with area, aspect ratio, taper, and sweep based on publicly
available 737-800 data.

Airfoil shapes are not included in the optimization problem. The VLM formulation used to
compute the induced drag assumes 2D panels, so it does not account for airfoil shapes. The
viscous drag estimate uses a flat plate skin friction coefficient with a form factor correction. The
Korn equation, which estimates wave drag, uses only the thickness-to-chord ratio. Because these
aerodynamic models cannot account for detailed airfoil shapes, we exclude them as design variables.
The impact of ignoring airfoil shape as a design variable is discussed at the end of Section 4. Note
that the structural wingbox model does account for airfoil shape, which it uses to compute the area
moments of inertia, torsion constant, and cross-sectional area. Varying the thickness-to-chord ratio
scales the wingbox coordinates.
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Parameter Value

Planform area 124.6 m2

Wingbox shape 10–60% chord of NACA SC2-0612 airfoil
Young’s modulus 73.1 GPa
Shear modulus 27.5 GPa
Yield stress 420 MPa
Safety factor 1.5
Material density 2,780 kg/m3

Table 2: Structural parameters are based on 7000-series aluminum used in the 737-800 wing.

2.3 Coupling of mission and aerostructural analyses

While OpenAeroStruct is fast, it is not fast enough to incorporate directly into OpenConcept’s
mission analysis. An OpenConcept mission uses somewhere on the order of 50 to 100 analysis
points throughout the mission for numerical integration. The Newton solver converges this mission
in roughly 5 iterations. If OpenAeroStruct were included directly, the aerostructural analysis and
its derivative computation, which uses a combination of analytic and complex step methods, would
be called hundreds of times. Secondly, if OpenAeroStruct is called directly, the Jacobian in the
linear system of OpenMDAO’s Newton solver would rapidly become unwieldy. Finally, this work
may be used in OpenConcept optimizations that do not include wing design variables. In those
cases, it would be beneficial to avoid the computational cost of repeatedly calling OpenAeroStruct
within every optimization iteration. By using a surrogate, we call OpenAeroStruct only when the
wing design changes and otherwise use the existing surrogate model.

These factors suggest that using a surrogate model would be a good solution. The Ope-
nAeroStruct analyses required to train the surrogate model are quickly evaluated in parallel and
need only be rerun when the wing design changes. This is also convenient for optimizations without
wing design variables since the training data can be generated once at the beginning, and then the
cheap surrogate can be used throughout.

While adding geometric parameters as inputs to the surrogate model may seem intuitive, it
is not computationally tractable as the number of geometric design variables increases. Every
additional input to the surrogate model adds a dimension to the required training data set. With
potentially hundreds of geometric design variables, generating enough training data to create an
accurate surrogate model in the high dimensional space is far too expensive.

The surrogate for this model uses SciPy’s cubic interpolation [35]. It fits the surrogate quickly
and is accurate for this application. If even more accuracy or fewer aerostructural analyses were
necessary, kriging and other more advanced surrogate models could be considered [9, 23, 36]. The
surrogate model is automatically retrained anytime the wing design changes, but will otherwise use
existing data.

The inputs to the surrogate are Mach number, angle of attack, and altitude. Because all possible
flight conditions of a mission must be captured, the surrogate is trained with Mach numbers from
0.1 to 0.9, angles of attack from −10 to 15 deg, and altitudes from 0 to 40,000 ft. Most training
points are clustered between Mach 0.7 and 0.9 to capture the drag rise at high Mach numbers
accurately. Overall, the surrogate performs a sweep over nine Mach numbers, six angles of attack,
and four altitudes, resulting in 216 aerostructural analyses. These cases run in 40 seconds in parallel
on a 16-core AMD Ryzen 5950X. The surrogate is accurate, estimating fuel burn to within tenths
of a percent, so the training grid could be coarsened for further runtime improvements while still
closely representing the OpenAeroStruct data.
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2.4 Surrogate model accuracy

We compare two separate mission analyses to evaluate the surrogate model’s accuracy. The first
is a mission with the surrogate as the aerodynamic model. The second is a mission with OpenCon-
cept calling OpenAeroStruct directly in the loop. Without a surrogate model, an OpenConcept
mission analysis with OpenAeroStruct’s aerostructural model incurs nearly a ten-fold increase in
run time compared to a mission analysis with a surrogate model. This shows why an accurate
surrogate is beneficial for mission analysis and optimization. When trained with 216 aerostructural
analyses, the surrogate closely matches the mission run with OpenAeroStruct directly in the loop.
Figure 4 shows the error due to the surrogate model in the 300 nmi mission and Figure 5 shows
the same for the 2,900 nmi mission. The results match the exact values within a couple of tenths
of a percent for both cases. An error this low indicates we could coarsen the 216 training points
while maintaining sufficient accuracy. However, we can afford to have so many points because
OpenAeroStruct is relatively cheap, and the training data generation is parallelized.
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(d) Fuel burn error caused by fuel flow error

Figure 4: Mission analysis with the aerostructural surrogate estimates fuel burn to within 0.02% of the same mission
run with OpenAeroStruct directly in the loop for the 300 nmi mission.

The flight conditions with the most significant errors are at high Mach numbers. This is due
to the rapid increase in drag coefficient at high Mach numbers and high angles of attack, which
can be seen in Figure 6. Since the 2,900 nmi mission spends more time in cruise (M = 0.78), the
error accumulates and results in more fuel burn errors for the 2,900 nmi mission than the 300 nmi
mission. The curvature is challenging for the surrogate model to capture, but it still performs well.
More advanced surrogate modeling techniques, such as kriging models, could be used to better
approximate this behavior.

For general purpose use within OpenConcept, estimating fuel burn to within tenths of a percent
is more than sufficient. Suppose even more rapid evaluation is necessary, or the aircraft does not
fly in the transonic regime. In that case, the grid of Mach numbers, angles of attack, and altitudes
that is used to train the surrogate can be coarsened.
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(c) Fuel flow error caused by throttle error
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(d) Fuel burn error caused by fuel flow error

Figure 5: The 2,900 nmi mission with the surrogate model in the loop has slightly more error than the short one
due to longer durations at high Mach numbers, but still estimates fuel burn to within 0.13% of the mission run with
OpenAeroStruct called in the loop.
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Figure 6: Drag and lift coefficient surrogate model at 30,000 ft.

2.5 Model validation

We validate the fuel burn value against estimated 737-800 values from other mission analysis
tools, shown in Table 3. The validation mission has a range of 2,950 nmi, cruises at 35,000 ft
and Mach 0.78, and carries 36,540 lbs of payload. The twist distribution of the 737-800’s wing is
not available, so we use one of the optimized designs for a fair comparison. We assume the wing
is the one optimized by mission-based optimization at a range of 2,900 nmi. Our tool predicts a
reasonable fuel burn value within roughly 10% of the other tools. The remaining differences may
be due to assumptions in the engine model or variations in the climb and descent profiles.
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Tool Block fuel (lbs)

PASS 38,180
TASOPT 41,238
SUAVE 39,556
pyMission 38,687
This work 44,730

Table 3: Validation of 737-800 fuel burn against other tools (data from Kao et al. [37]).

3 Optimization

The mission-based optimization problem, listed in Table 4, is to minimize the fuel burn through-
out the mission by varying the aerostructural wing design. Thanks to the modularity of OpenCon-
cept, this could be easily extended to more complex models or other objective functions, such as
the direct operating cost. To use a similar methodology as Kenway and Martins [4], we size the
structure with a 2.5g maneuver condition at 20,000 ft, Mach 0.78, and maximum takeoff weight
(MTOW). The angle of attack to satisfy lift equals weight at the maneuver condition is solved in-
ternally in OpenConcept using the Newton solver. The Kreisselmeier–Steinhauser function is used
to aggregate the stress constraints of the wingbox [38, 39]. The aspect ratio is limited to 10.4 to
meet the wingspan limit of the Group III gates used by the 737-800. The aspect ratio fully defines
the wingspan because the wing area is held constant, so bounding the aspect ratio is equivalent to
enforcing a span constraint. The thickness-to-chord ratio has a lower bound at 3%. The skin and
spar thicknesses are assigned a lower bound of 3 mm, adopted from Chauhan and Martins [33].
We use a simple optimization problem formulation to gain intuition on the results from different
objective functions. The optimized wings are not necessarily practical designs as they have only
one load case and are missing other constraints, such as flutter and low-speed stall.

Function/variable Bound Note Qty

minimize mission fuel burn Computed by OpenConcept
w.r.t. aspect ratio ≤10.4 Limited for Group III gate wingspan 1

taper ratio 1
quarter-chord sweep 1
wing twist B-spline interpolated, set to 0 deg at tip 3
thickness-to-chord ratio ≥3% B-spline interpolated 4
skin thickness ≥3 mm B-spline interpolated 4
spar thickness ≥3 mm B-spline interpolated 4

Total 18
subject to von Mises stress at 2.5g ≤280 MPa 20,000 ft and Mach 0.78 at MTOW 1

Total 1

Table 4: The mission-based optimization problem uses a numerically integrated fuel burn as the objective function.

The goal is to compare the traditional single and multipoint methods to aerostructural optimiza-
tion with the actual mission fuel burn as the objective function, mission-based optimization. To do
this, we define the single and multipoint optimization problems to closely resemble the formulation
used in previous high-fidelity single and multipoint aerostructural optimizations [2, 4].

Single-point optimization, listed in Table 5, estimates fuel burn based on a single aerostructural
analysis in cruise. The fuel burn estimate uses the Bréguet range equation at the single-point flight
condition with a constant thrust-specific fuel consumption value of 17.76 g/(kN-sec). The flight
condition of the single-point is the cruise flight condition at Mach 0.78 and 35,000 ft, with half of
the fuel burned. The initial weight is evaluated the same way as the mission-based weight by adding
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to MTOW the difference between the new wing weight and original wing weight, as estimated by
Raymer [32].

Function/variable Bound Note Qty

minimize fuel burn Computed with Bréguet range
w.r.t. aspect ratio ≤10.4 Limited for Group III gate wingspan 1

taper ratio 1
quarter-chord sweep 1
wing twist B-spline interpolated, set to 0 deg at tip 3
thickness-to-chord ratio ≥3% B-spline interpolated 4
skin thickness ≥3 mm B-spline interpolated 4
spar thickness ≥3 mm B-spline interpolated 4
cruise angle of attack 1
maneuver angle of attack 1

Total 20
subject to von Mises stress at 2.5g ≤280 MPa 20,000 ft and Mach 0.78 at MTOW 1

cruise L = W Weight with half of fuel burned 1
maneuver L = W MTOW at 2.5g 1

Total 3

Table 5: The single-point optimization problem computes the fuel burn objective function using a single aerostruc-
tural analysis in cruise and the Bréguet range equation.

Multipoint optimization, listed in Table 6, is intended to avoid the single-point formulation’s
pitfall of improving on-design performance at the cost of worse off-design performance. Kenway and
Martins [40] show the improved performance of multipoint aerodynamic shape optimization over
single-point across a range of operating conditions. Liem et al. [23] report a similar conclusion for
aerostructural optimization. This multipoint implementation uses the same approach as Kenway
and Martins [4], where the design cruise condition is perturbed by Mach 0.01 and 1,000 ft in altitude.
This results in five flight conditions, shown in Figure 7. To compute the objective function, the
fuel burn estimates use the same method as the single-point for each flight condition. The average
of the five fuel burns becomes the objective.

Function/variable Bound Note Qty

minimize fuel burn Average of five cruise conditions
w.r.t. aspect ratio ≤10.4 Limited for Group III gate wingspan 1

taper ratio 1
quarter-chord sweep 1
wing twist B-spline interpolated, set to 0 deg at tip 3
thickness-to-chord ratio ≥3% B-spline interpolated 4
skin thickness ≥3 mm B-spline interpolated 4
spar thickness ≥3 mm B-spline interpolated 4
cruise angles of attack 5
maneuver angle of attack 1

Total 24
subject to von Mises stress at 2.5g ≤280 MPa 20,000 ft and Mach 0.78 at MTOW 1

cruise L = W Weights with half of fuel burned 5
maneuver L = W MTOW at 2.5g 1

Total 7

Table 6: The multipoint problem’s objective averages fuel burns from five different cruise conditions. The fuel burn
for each cruise condition is computed the same way as is done for the single-point problem.

To fairly compare the optimization methods, the resulting wing design from each optimization
method is run on the mission profile in OpenConcept by calling OpenAeroStruct directly instead
of using the surrogate.
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Figure 7: Multipoint averages fuel burn estimates from five flight conditions for its objective function.

4 Discussion

The hypothesized pitfall of traditional aerostructural optimization methods is that the Bréguet
range fuel burn model poorly estimates the total mission fuel burn as the cruise fuel burn becomes
less dominant. This is because all analyses are performed for cruise conditions, so the performance
in the climb is not modeled. Thus, as the cruise segment becomes shorter, the optimizer will design
a wing to minimize a fuel burn approximation that inaccurately reflects the actual fuel burn.
To investigate this hypothesis, we run aerostructural optimizations with the three optimization
methods on missions ranging from 300 nmi to 2,900 nmi. On the 300 nmi mission, the cruise
segment is only 31 nmi and makes up a small fraction of the fuel burn. On the 2,900 nmi mission,
the cruise segment is over 2600 nmi and dominates the fuel burn.

All optimizations reduce the optimality by at least 3–4 orders of magnitude and achieve a
feasibility of 10−6, as defined by SNOPT [41]. The single-point cases take roughly 5 min on a
single thread. The multipoint optimizations run for 20-30 min on a single thread. The mission-
based optimizations require 90 min to reach the same optimality while running the aerostructural
analyses to train in parallel using all 32 threads of the AMD Ryzen 5950X.

The results from the three optimization methods on the range of mission lengths are shown in
Figure 8; data for three cases are listed in Appendix A. The most significant difference in actual
fuel burn between the three optimized wings is only 1.3%. However, there is an evident trend as
the mission range decreases. Because the mission-based optimization is designing the wing using
the most accurate model of mission fuel burn, it always finds a better wing design than single-point
and multipoint. This effect is especially noticeable for short missions where the mission-based
optimization can properly trade off the wing’s low and high-speed performance in the different
flight segments. Multipoint optimization improves over a single-point formulation as the mission
range decreases, but the effect is much less pronounced than mission-based optimization. Even
for missions at the top end of the 737’s range, mission-based optimization finds a better design,
though only tenths of a percent better. This is partially because the mission-based optimization
considers climb, which offers information about the effect of the lower-speed performance in climb
and structural weight on mission fuel burn. The fuel burn savings in long missions are also because
mission-based optimization can account for variations in the angle of attack during cruise. Mission-
based optimization computes fuel burn by integrating fuel flow across the mission, which means that
the lift-to-drag ratio at every numerical integration point affects the fuel burn. This incentivizes the
optimizer in the mission-based problem to improve performance across all flight conditions in the
mission, as opposed to the small number of flight conditions in the single and multipoint problems.
The variation in the angle of attack is because the mission profile maintains the same altitude and
Mach number for the entire duration of cruise, shown in Figure 9. In reality, a stepped climb would
be used during cruise to maintain a more constant angle of attack.
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Figure 8: Mission-based optimization outperforms other conventional methods, particularly for short missions.
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Figure 9: On long missions, the lift coefficient varies slightly throughout cruise as fuel is burned.

By inspecting the relative fuel burn in the mission segments for the mission-based optimized
designs, shown in Figure 10, we can understand the reason for the difference in fuel burn among the
optimization methods. The figure shows that considering performance in the climb, and generally in
flight segments other than cruise, is essential for shorter missions because climb fuel burn can make
up half, or more, of the total fuel burn. The traditional aerostructural optimization approaches are
unaware of these trends, so they miss out on the benefits.

By comparing the wing design, we can further explain the different decisions made by the
optimizers for the three optimization problems. Figure 11 shows the thickness-to-chord ratio and
structural thicknesses for wings optimized with the three different methods on the shortest and
longest missions. The thickness-to-chord ratios at the tip are on the low side for transport aircraft.
As mentioned in Section 3, we give the optimizer freedom so we can more clearly compare the
behavior with different objectives. This may result in designs that do not satisfy all practical
constraints. The mission-based optimization identifies that the fuel burn in the climb during the
300 nmi mission is much more substantial than the fuel burn during cruise. It uses this knowledge
to better optimize the wing for the lower speeds in climb, rather than shaping the wing for the
high-speed cruise. This manifests as a greater thickness-to-chord ratio than the single-point and
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Figure 10: Fuel burn in climb exceeds cruise fuel burn for shorter missions.

multipoint cases, allowing it to reduce the wingbox weight using thinner spars and skins. On
the 2,900 nmi mission, the thickness-to-chord distributions are nearly identical between the three
designs. This is because high-speed performance becomes most important when the cruise segment
dominates. It is no longer beneficial to reduce weight by increasing the thickness-to-chord ratio,
which increases wave drag.

The optimized planform shapes from the three objective functions are shown in Figure 12 for
the shortest and longest missions. All designs fall on the upper bound of the span limit, which is
enforced via an upper bound on aspect ratio. On the 300 nmi mission, mission-based optimization
reduces the sweep compared to the other objectives’ designs. The reduced sweep increases wave
drag in cruise but allows for a lighter structure, which is a worthwhile tradeoff for the short mission.
It is not a beneficial tradeoff for the long mission, so the planform shapes from the three objectives
are similar.

Mission-based optimization shifts the lift slightly inboard at the 2.5g structural sizing condition,
shown in Figure 13, further enabling a lighter wingbox structure. These results show that the
thickness-to-chord ratio is a critical aerostructural design variable because it affects aerodynamic
and structural performance. A smaller thickness-to-chord ratio results in a wing with lower wave
drag at the cost of increased weight since it needs a heavier structure to support the bending loads.

Due to the increased thickness-to-chord ratio, the mission-based optimization arrives at a much
lighter optimized wing design across all mission ranges. This is a significant result because an
aircraft’s weight is closely related to its purchase price [42]. Takeoff gross weight has been used as
an objective function for aerostructural optimization because of its relationship to both acquisition
cost and fuel burn [4, 43].

Figure 14 shows that mission-based optimization returns a wing up to 25% lighter than the wing
from the two traditional optimization approaches. One reason is that mission-based optimization
can consider the impact of weight on thrust, and thus on fuel burn, when the flight path angle is
not zero. The Bréguet range equation assumes that lift equals weight and thrust equals drag. This
is not true when the aircraft is climbing or descending since a component of weight acts along the
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Figure 11: For the 300 nmi mission, mission-based optimization reduces fuel burn compared to single-point and
multipoint by increasing the thickness-to-chord ratio, enabling a lighter structure. The designs are more similar on
the longer 2,900 nmi mission.
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Figure 12: On the short mission, mission-based optimization converges to a lower sweep than single-point and
multipoint, which helps reduces structural weight. On the long mission, the planform designs are very similar.
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Figure 13: On the 300 nmi mission, mission-based optimization shifts the lift slightly inboard at the 2.5g sizing
condition to decrease the bending moment at the root, further reducing the required structural weight.
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Figure 14: The wing is much lighter with mission-based optimization than single-point or multipoint.

same axis as the thrust. OpenConcept’s mission analysis captures this effect. Thus, it is in the
interest of mission-based optimization to decrease the weight to reduce the climb fuel burn.

On the shorter missions, mission-based optimization sacrifices aerodynamic efficiency in cruise
to achieve weight savings, as shown in Figure 15. Surprisingly, the optimizer finds that over a 4%
decrease in the lift-to-drag ratio in cruise is worthwhile to decrease climb fuel burn by reducing
wing weight. The lift-to-drag ratios are taken from the middle numerical integration point in the
cruise segment.

Generalizing these results to RANS-based optimizations, we expect the fuel burn difference
between traditional and mission-based approaches to grow slightly. RANS can predict the effect of
small changes to the wing’s airfoil shapes that OpenAeroStruct cannot. Accordingly, RANS-based
optimizations tend to use more shape design variables and thus specialize the design to certain flight
conditions more than OpenAeroStruct. This specialization often degrades off-design performance,
particularly for the single-point optimization, which could increase actual mission fuel burn. For
example, including airfoil shape in a single-point design would likely guide the optimizer toward
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Figure 15: Mission-based optimization sacrifices drag in cruise to decrease weight, reducing overall fuel burn.

supercritical airfoil shapes. Adding climb information would allow it to balance wave drag reduction
with supercritical airfoils against airfoil shapes that increase efficiency at lower speeds. These effects
slightly expand the set of missions for which it is essential to consider climb performance in the
objective function (Section 5 proposes an easy way to do this).

5 Sequential Bréguet range: a low-cost improvement for high-fidelity
optimizations

Motivated by the substantial fuel burn in the climb segment shown in Figure 10 and single-
point and multipoint’s poor modeling of the climb, we propose a modification to the traditional fuel
burn objective. This approach attempts to gain the fuel burn and wing weight improvements of
mission-based optimization without the complexity and cost of adding a surrogate and numerically
simulating the mission. We first derive a modified version of the Bréguet range equation that
incorporates the effects of nonzero flight path angles, such as for climb and descent. Instead of
modeling the mission with a single evaluation of this equation, like single-point and multipoint
formulations, this new objective uses two or more sequential evaluations. For this case, we use a
single aerostructural analysis in climb and a single one in cruise. Though it could be included,
we ignore fuel burn in descent since it is small compared to climb and cruise fuel burn (as seen
in Figure 10) and would require an additional aerostructural analysis. This approach can model
arbitrarily complicated mission profiles, such as a step climb, by adding more sequential evaluations
of the fuel burn equation.

5.1 Derivation

The Bréguet range equation assumes lift equals weight and thrust equals drag. While this is
a reasonable assumption when flying level, it ignores crucial effects when the flight path angle is
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nonzero. In climb and descent, weight is decomposed in the steady force balance as

L = W cos γ (1)

T = D +W sin γ (2)

where γ is the flight path angle (positive is climb). By incorporating these assumptions into the
range equation derivation, we find the climb and descent range equation:

R =
1

cos γ
L
D

+ sin γ

V

TSFC
ln
Wi

Wf
(3)

When the flight path angle is zero, this reduces to the standard Bréguet range equation. This
equation has also been derived for modeling fuel burn in a cruise-climb by Hale [44]. A similar
equation is presented by Raymer [32] (Equation 17.94) but is in a form that does not retrieve the
original Bréguet range equation when the climb angle is zero.

The assumptions of constant lift-to-drag ratio and thrust-specific fuel consumption are less
reasonable for climb and descent, where the flight conditions vary. However, the equation still
substantially improves the original fuel burn approximation. Since commercial aircraft climb angles
are 2–4 degrees, the small angle approximation can be used here. Fuel burn is computed by
manipulating Equation 4 to solve for Wi −Wf . The result is

fuel burn = Wi −Wf = Wi

{
1 − exp

[
−
(

1
L
D

+ γ

)
TSFC

R

V

]}
(4)

5.2 Computation procedure

The procedure used to compute the fuel burn at the end of the cruise segment is the following:

1. Perform an aerostructural analysis at the flight condition halfway through the climb.

2. Use Equation 4 to compute the fuel burn in climb. The initial weight, Wi, is the takeoff
weight and the range, R, is the length of the climb segment as defined by the mission profile.
The flight path angle, γ, is taken to be tan−1(hcruise/Rclimb), which assumes a constant flight
path angle throughout climb.

3. Perform an aerostructural analysis halfway through the cruise segment.

4. Use Equation 4 to compute fuel burn in cruise. Wi for this cruise segment calculation is the
final weight, Wf , from the climb fuel burn calculation (takeoff weight minus climb fuel burn).
R is the cruise length as defined by the mission profile. In this case γ = 0, so the equation
reduces to the standard Bréguet range equation.

5. Compute the objective function as the sum of the fuel burns from the climb and cruise
segments. This can also be computed as the initial climb weight minus the final cruise
weight.

The midpoint of each flight segment is used as the analysis point to follow the precedent set in [4].
In this work, the midpoint flight condition is defined by the Mach number and altitude of each
flight segment’s middle numerical integration point in the mission analysis. This information may
not be available in all cases, so we suggest using the climb flight speed and half of the cruise
altitude to define the midpoint flight condition in the climb. This fuel burn computation is only an
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approximation because it assumes that the product of L/D, TSFC, and V is constant in climb,
which is likely not the case on a real mission. Thus, it is not critical that the flight condition is
precisely at the halfway point.

The optimizer determines the angles of attack to satisfy lift equals weight for the two aerostruc-
tural analyses. This is the same way as is done in the single-point and multipoint problems listed in
Tables 5 and 6. The climb analysis assumes that half of the fuel weight computed in step 2 has been
burned. The cruise analysis assumes the climb fuel and half of the cruise fuel have been burned.
The optimization problem listed in Table 7 is similar to the single-point optimization problem but
with a new objective function calculation and associated design variables and constraints for the
climb.

Function/variable Bound Note Qty

minimize climb plus cruise fuel burn Sequential evaluations of Equation 4
w.r.t. aspect ratio ≤10.4 Limited for Group III gate wingspan 1

taper ratio 1
quarter-chord sweep 1
wing twist B-spline interpolated, set to 0 deg at tip 3
thickness-to-chord ratio ≥3% B-spline interpolated 4
skin thickness ≥3 mm B-spline interpolated 4
spar thickness ≥3 mm B-spline interpolated 4
climb angle of attack 1
cruise angle of attack 1
maneuver angle of attack 1

Total 21
subject to von Mises stress at 2.5g ≤280 MPa 20,000 ft and M = 0.78 at MTOW 1

climb L = W Weight with half of climb fuel burned 1
cruise L = W Weight with climb and half cruise fuel burned 1
maneuver L = W MTOW at 2.5g 1

Total 4

Table 7: The improvement to the traditional aerostructural problems uses sequential evaluations of the modified
Bréguet range equation (Equation 4) for climb and cruise.

Figure 16 shows how the necessary components are connected to compute the objective and
constraints required by the optimizer. All aerostructural analyses can be run in parallel because
they rely only on updated design variable information from the optimizer. Note how the amount of
fuel burned during climb does affect the lift required in cruise. The optimizer solves this relationship
using the cruise L = W constraint.

This approach can incorporate a multipoint cruise segment or a mission profile with more
segments. For example, a multipoint cruise could be included using the same calculation for climb
fuel burn but then average the cruise fuel burn (steps 3 and 4) from a handful of different cruise
flight conditions.

5.3 Discussion

We revisit the same plots as before to assess the benefit of using this approach but now with the
new objective’s designs. Figure 17 shows the fuel burn of the four objective functions relative to
the single-point optimization. The new objective function that includes a climb analysis performs
better than single-point and multipoint. It finds a much better design for the shorter missions than
single-point and multipoint, which ignore performance in the climb.

The proposed objective function achieves similar wing weight reduction to mission-based opti-
mization. Figure 18 shows that the new objective yields a lighter wing for shorter missions than
mission-based optimization. These weight savings are because the single-point + climb objective
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Figure 16: XDSM [30] showing the model setup for the sequential Bréguet optimization problem. The setup allows
the three aerostructural analyses to be run in parallel.
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Figure 17: Including the climb fuel burn separately in the optimization offers significant improvements over single-
point and multipoint, especially for short missions.

slightly overpredicts climb fuel burn, which puts an even greater emphasis on weight savings than
in the mission-based optimization.

Figures 19 and 20 show that the single-point + climb objective returns a wing that is much
closer in design to the wing designed with mission-based optimization. The single-point + climb
design has a slightly higher thickness-to-chord ratio and slightly lower structural thickness than the
mission-based design due to overprediction of climb fuel burn. This shows that the new objective
gives the optimizer enough information to properly trade-off climb and cruise performance, despite
the simplifications.

Until now, all fuel burn values we have shown come from taking the designs optimized with
each objective and running them in OpenConcept. However, it is interesting to see how closely the
fuel burn approximations, the objective functions, match the value computed by OpenConcept for
a given wing design. Figure 21 shows the fuel burn estimated by each approximation relative to
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Figure 18: The proposed objective function achieves similar wing weight benefits to mission-based optimization,
significantly outperforming both traditional optimization methods.
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mission-based and
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Figure 19: The planform geometries from the mission-based and single-point + climb optimizations are nearly
identical for the 300 nmi mission. On the longer mission, all planform shapes are similar.

the actual fuel burn computed by OpenConcept. The sequential Bréguet estimate has half as much
error in the fuel burn as the conventional Bréguet range estimate relative to full mission analysis.
The constant error across all mission ranges is due to the error in Bréguet range’s estimate of the
cruise fuel burn and is attributed to the variation in the cruise flight condition for longer missions,
shown in Figure 9.

Finally, we compare the computation time required for each type of optimization. The cases were
run on an AMD Ryzen 5950X. All optimizations are run on a single processor, except for generating
the training data for the mission-based surrogate model, which uses all available processors. These
optimizations achieve the same optimality and feasibility tolerances as the previous optimizations.

The wall time for each optimization is shown in Figure 22. The single-point cases finish in 5–10
min, the multipoint cases in 20–30 min, the mission-based cases in 60–80 min, and the new objective
cases in 10–20 min. The new objective achieves results with performance near the mission-based
results, but in a quarter of the time.

21



-0.50 -0.25 0.00 0.25 0.50
Normalized span

-2

-1

0

1

2

T
w

is
t 

(d
eg

)

0

5

10

15

T
hi

ck
ne

ss
-t

o-
ch

or
d 

(%
) 300 nmi 2,900 nmi

single-point
multipoint
mission-based
single-point + climb

0

5

10

15

20

St
ru

ct
ur

al
 t

hi
ck

ne
ss

 (
m

m
)

skin
spar

Figure 20: The new objective achieves a design with thickness-to-chord and structural thickness distributions that
are much closer to the mission-based optimization design than to the designs from traditional objectives.
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Figure 21: The new method better approximates the actual fuel burn compared to single-point. For this figure, a
fuel burn estimation in descent for single-point + climb is included for a fair comparison between the methods.
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Figure 22: The new objective enables the optimizer to find wing designs similar to mission-based optimizations,
but in a quarter of the time.

6 Conclusions

In this work, we show that traditional single-point and multipoint aerostructural optimization
methods realize most of the fuel burn improvement compared to an approach that uses a more
accurate fuel burn objective—within 1–2% of each other. This holds even for extreme cases where
climb fuel burn makes up most of the total fuel burn. These results are found by analyzing a Boeing
737-sized airplane on mission ranges from 300 to 2,900 nmi. As the mission range increases, the
wings designed by the different objective functions converge toward the same fuel burn value. The
convergence of optimized designs as the mission range increases is a promising sign for single and
multipoint optimizations. It indicates that, particularly for long-range aircraft, the fuel burns of
designs optimized with traditional approaches match the optimum based on a true mission-based
fuel burn objective within fractions of a percent.

The mission-based optimization, which computes climb fuel burn, returns a wing up to 25%
lighter than the wings from single and multipoint optimizations. These findings show that while
performance between the optimization methods may be similar as measured by the objective func-
tion, other essential design aspects vary considerably. Mission-based optimization arrives at a
similar fuel burn objective function value as single-point and multipoint optimizations. However,
the design it uses to achieve that fuel burn is different.

To bridge this gap, we present an improved aerostructural optimization objective that achieves
most mission-based optimization’s benefits, both in fuel burn and wing weight, by considering the
climb segment more accurately. It uses a modified Bréguet fuel burn estimate that models nonzero
flight path angles. The estimate is evaluated sequentially for each flight segment—climb and cruise
in this case—and uses cumulative fuel burn from previous segments to determine the weight for
the following segments. This approach requires similar computational resources to traditional
methods and minimal additional implementation for existing high-fidelity codes, unlike mission-
based optimization. Aerostructural optimizations with the improved objective function return
designs that closely resemble those optimized with the mission-based objective. The single-point +
climb objective also performs similarly to the mission-based objective. It obtains the majority of
the fuel burn savings and greater wing weight reductions than the mission-based optimization. This
new approach is flexible in that it can model arbitrary mission profiles by customizing the number
of individual fuel burn segments and flight conditions. For example, this approach could be used
to more accurately model a step climb in cruise or unconventional mission profiles for high-fidelity
optimization.
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In the future, these concepts can be applied to high-fidelity aerostructural optimizations to
produce designs with even better real-world performance. Further practical constraints, such as
for flutter or high lift performance, can be added to continue pushing the boundaries of what is
possible with aerostructural optimization.

A Appendix

Table 8 contains optimization result data for the 300, 1500, and 2,900 nmi missions. The spline
control points for the twist, thickness-to-chord, spar thickness, and skin thickness design variables
are ordered from values at the tip of the wing to the root. The twist control point at the tip is
locked at 0 deg to prevent rigid body motion. The arrays in the multipoint cruise angle of attack
and cruise L = W rows are ordered as follows:

1. Mach 0.78, 35,000 ft

2. Mach 0.79, 35,000 ft

3. Mach 0.77, 35,000 ft

4. Mach 0.78, 34,000 ft

5. Mach 0.78, 36,000 ft

24



U
n
it

L
o
w
e
r

U
p
p
e
r

S
in

g
le

-p
o
in

t
M

u
lt
ip

o
in

t
M

is
s
io

n
-b

a
s
e
d

S
in

g
le

-p
o
in

t
+

c
li
m

b
m

in
im

iz
e

m
is
si
o
n

fu
e
l
b
u
rn

k
g

2
,7
7
0
.4
4

2
,7
6
5
.5
3

2
,7
3
3
.4
9

2
,7
4
0
.6
3

w
.r
.t
.

a
sp

e
c
t
ra

ti
o

1
0
.4
0
1

1
0
.4

0
1

1
0
.4

0
1

1
0
.4

0
1

1
0
.4

0
1

ta
p
e
r
ra

ti
o

0
.1
6
8

0
.1
7
4

0
.1
8
0

0
.1
8
0

sw
e
e
p

d
e
g

2
3
.0
4
6

2
3
.5
2
4

2
1
.5
7
7

2
1
.7
5
4

tw
is
t

d
e
g

[0
.0
0
0
,
2
.0
7
2
,
-2

.8
6
2
,
-1

.0
7
2
]

[0
.0
0
0
,
5
.2
7
4
,
-3

.6
3
0
,
0
.5
8
8
]

[0
.0
0
0
,
4
.9
9
7
,
-2

.7
8
7
,
1
.0
5
5
]

[0
.0
0
0
,
4
.0
8
4
,
-1

.4
6
0
,
1
.2
0
6
]

t/
c
ra

ti
o

0
.0
3
0

[0
.0
3
4
,
0
.0
8
6
,
0
.0
9
0
,
0
.1
1
8
]

[0
.0

3
0
,
0
.0
9
6
,
0
.0
8
5
,
0
.1
1
9
]

[0
.0
3
4
,
0
.1
1
2
,
0
.1
2
3
,
0
.1
4
7
]

[0
.0
3
8
,
0
.1
1
7
,
0
.1
3
6
,
0
.1
5
7
]

sp
a
r
th

ic
k
n
e
ss

m
m

3
.0
0
0

[3
.9
9
0
,
3
.0

0
0
,
8
.7
2
2
,
5
.4
3
4
]

[7
.0
8
8
,
3
.0

0
0
,
6
.4
3
8
,
5
.4
9
0
]

[4
.3
1
3
,
3
.0

0
0
,
4
.1
7
7
,
4
.2
0
6
]

[3
.4
3
1
,
3
.0

0
0
,
3
.7
8
8
,
4
.0
5
8
]

sk
in

th
ic
k
n
e
ss

m
m

3
.0
0
0

[4
.9
9
7
,
1
4
.9
4
0
,
1
8
.4
6
9
,
1
9
.1
5
0
]

[4
.9
4
3
,
1
3
.3
4
9
,
1
9
.2
3
0
,
1
8
.9
2
6
]

[3
.7
0
1
,
1
1
.2
0
4
,
1
2
.3
9
8
,
1
4
.3
7
5
]

[3
.0

0
0
,
1
0
.4
3
5
,
1
1
.3
0
6
,
1
3
.7
0
1
]

m
a
n
e
u
v
e
r
A
o
A

d
e
g

1
1
.9
1
5

1
0
.4
4
5

—
8
.8
6
6

c
ru

is
e
A
o
A

d
e
g

8
.7
6

[7
.7
2
,
7
.5
4
,
7
.9
1
,
7
.3
8
,
8
.0
7
]

—
6
.4
4

c
li
m
b

A
o
A

d
e
g

—
—

—
9
.4
9
3

s
u
b
je

c
t

t
o

2
.5
g

fa
il
u
re

0
.0
0
0

2
.8

×
1
0

−
6

1
.3

×
1
0

−
7

9
.1

×
1
0

−
8

6
.2

×
1
0

−
8

m
a
n
e
u
v
e
r

L
=

W
0
.0
0
0

0
.0
0
0

1
.8

×
1
0

−
8

−
4
.4

×
1
0

−
9

—
−

4
.4

×
1
0

−
1
0

c
ru

is
e

L
=

W
0
.0
0
0

0
.0
0
0

1
.6

×
1
0

−
8

−
4
.7

×
1
0

−
9
]

−
4
.7

×
1
0

−
9
,−

4
.7

×
1
0

−
9
,

[−
4
.7

×
1
0

−
9
,

−
4
.7

×
1
0

−
9
,

—
−

1
.4

×
1
0

−
1
0

c
li
m
b

L
=

W
0
.0
0
0

0
.0
0
0

—
—

—
−

8
.3

×
1
0

−
1
1

U
n
it

L
o
w
e
r

U
p
p
e
r

S
in

g
le

-p
o
in

t
M

u
lt
ip

o
in

t
M

is
s
io

n
-b

a
s
e
d

S
in

g
le

-p
o
in

t
+

c
li
m

b
m

in
im

iz
e

m
is
si
o
n

fu
e
l
b
u
rn

k
g

1
1
,1
7
3
.8
3

1
1
,1
6
8
.7
4

1
1
,1
4
1
.5
8

1
1
,1
6
4
.5
4

w
.r
.t
.

a
sp

e
c
t
ra

ti
o

1
0
.4
0
1

1
0
.4

0
1

1
0
.4

0
1

1
0
.4

0
1

1
0
.4

0
1

ta
p
e
r
ra

ti
o

0
.1
5
5

0
.1
6
2

0
.1
5
8

0
.1
6
1

sw
e
e
p

d
e
g

2
2
.4
4
7

2
2
.7
4
7

2
2
.6
7
4

2
3
.0
7
0

tw
is
t

d
e
g

[0
.0
0
0
,
5
.1
3
8
,
-3

.6
9
5
,
0
.3
9
3
]

[0
.0
0
0
,
5
.1
3
0
,
-3

.6
1
5
,
0
.4
9
0
]

[0
.0
0
0
,
4
.6
1
6
,
-3

.8
2
8
,
0
.1
8
5
]

[0
.0
0
0
,
5
.0
7
8
,
-3

.3
2
7
,
0
.6
7
8
]

t/
c
ra

ti
o

0
.0
3
0

[0
.0

3
0
,
0
.0
9
6
,
0
.0
8
8
,
0
.1
1
4
]

[0
.0

3
0
,
0
.0
9
4
,
0
.0
8
8
,
0
.1
1
5
]

[0
.0

3
0
,
0
.0
9
3
,
0
.0
9
3
,
0
.1
1
9
]

[0
.0
3
0
,
0
.1
0
0
,
0
.0
9
3
,
0
.1
2
3
]

sp
a
r
th

ic
k
n
e
ss

m
m

3
.0
0
0

[7
.5
9
4
,
3
.0

0
0
,
6
.0
4
6
,
5
.6
6
8
]

[5
.7
0
4
,
3
.7
3
4
,
6
.0
2
0
,
5
.6
1
2
]

[7
.5
0
9
,
3
.0

0
0
,
5
.5
9
4
,
5
.1
0
2
]

[6
.2
1
9
,
3
.0

0
0
,
5
.6
7
9
,
5
.2
1
5
]

sk
in

th
ic
k
n
e
ss

m
m

3
.0
0
0

[6
.2
9
8
,
1
3
.0
4
7
,
1
8
.3
9
1
,
1
8
.8
9
7
]

[5
.7
2
7
,
1
3
.3
8
2
,
1
8
.1
8
3
,
1
8
.8
9
1
]

[6
.0
8
1
,
1
2
.7
7
8
,
1
6
.6
7
0
,
1
7
.1
8
5
]

[5
.2
4
8
,
1
2
.4
9
2
,
1
6
.8
1
2
,
1
7
.5
6
0
]

m
a
n
e
u
v
e
r
A
o
A

d
e
g

1
0
.8
4
8

1
0
.3
8
2

—
1
0
.1
3
2

c
ru

is
e
A
o
A

d
e
g

7
.4
0

[7
.3
7
,
7
.1
9
,
7
.5
5
,
7
.0
4
,
7
.7
1
]

—
7
.0
4

c
li
m
b

A
o
A

d
e
g

—
—

—
1
0
.5
1
4

s
u
b
je

c
t

t
o

2
.5
g

fa
il
u
re

0
.0
0
0

1
.4

×
1
0

−
6

2
.1

×
1
0

−
8

4
.6

×
1
0

−
8

1
.4

×
1
0

−
7

m
a
n
e
u
v
e
r

L
=

W
0
.0
0
0

0
.0
0
0

−
1
.2

×
1
0

−
9

−
3
.1

×
1
0

−
1
0

—
6
.9

×
1
0

−
9

c
ru

is
e

L
=

W
0
.0
0
0

0
.0
0
0

1
.8

×
1
0

−
8

1
.5

×
1
0

−
1
0
]

1
.5

×
1
0

−
1
0
,1

.5
×

1
0

−
1
0
,

[1
.5

×
1
0

−
1
0
,

1
.5

×
1
0

−
1
0
,

—
6
.7

×
1
0

−
9

c
li
m
b

L
=

W
0
.0
0
0

0
.0
0
0

—
—

—
6
.2

×
1
0

−
9

U
n
it

L
o
w
e
r

U
p
p
e
r

S
in

g
le

-p
o
in

t
M

u
lt
ip

o
in

t
M

is
s
io

n
-b

a
s
e
d

S
in

g
le

-p
o
in

t
+

c
li
m

b
m

in
im

iz
e

m
is
si
o
n

fu
e
l
b
u
rn

k
g

2
0
,3
4
5
.3
6

2
0
,3
3
8
.3
3

2
0
,2
9
7
.5
1

2
0
,3
3
5
.7
4

w
.r
.t
.

a
sp

e
c
t
ra

ti
o

1
0
.4
0
1

1
0
.4

0
1

1
0
.4

0
1

1
0
.4

0
1

1
0
.4

0
1

ta
p
e
r
ra

ti
o

0
.1
4
0

0
.1
4
6

0
.1
3
7

0
.1
4
5

sw
e
e
p

d
e
g

2
1
.4
9
6

2
1
.8
5
3

2
1
.2
7
1

2
1
.7
8
5

tw
is
t

d
e
g

[0
.0
0
0
,
4
.7
8
6
,
-3

.6
5
6
,
0
.1
7
2
]

[0
.0
0
0
,
4
.7
9
7
,
-3

.6
4
7
,
0
.2
6
2
]

[0
.0
0
0
,
4
.0
3
3
,
-3

.9
4
3
,
-0

.2
5
7
]

[0
.0
0
0
,
4
.8
2
1
,
-3

.3
8
8
,
0
.3
9
1
]

t/
c
ra

ti
o

0
.0
3
0

[0
.0
3
1
,
0
.0
9
6
,
0
.0
8
6
,
0
.1
1
2
]

[0
.0
3
2
,
0
.0
9
2
,
0
.0
8
9
,
0
.1
1
2
]

[0
.0

3
0
,
0
.0
9
2
,
0
.0
8
8
,
0
.1
1
3
]

[0
.0
3
1
,
0
.0
9
9
,
0
.0
8
8
,
0
.1
1
7
]

sp
a
r
th

ic
k
n
e
ss

m
m

3
.0
0
0

[6
.3
9
1
,
3
.3
0
6
,
6
.0
3
4
,
5
.6
9
6
]

[6
.3
9
4
,
3
.0

0
0
,
6
.1
7
2
,
5
.6
6
0
]

[8
.0
0
9
,
3
.0

0
0
,
5
.8
2
8
,
5
.2
7
8
]

[6
.0
5
7
,
3
.0

0
0
,
5
.9
8
9
,
5
.4
1
5
]

sk
in

th
ic
k
n
e
ss

m
m

3
.0
0
0

[7
.0
2
5
,
1
2
.5
0
8
,
1
8
.2
4
6
,
1
8
.5
0
0
]

[6
.3
1
1
,
1
3
.3
0
3
,
1
7
.5
5
8
,
1
8
.6
0
4
]

[7
.7
4
2
,
1
2
.0
0
4
,
1
7
.3
2
9
,
1
7
.1
4
4
]

[6
.2
7
7
,
1
2
.1
1
0
,
1
7
.5
1
0
,
1
7
.6
6
4
]

m
a
n
e
u
v
e
r
A
o
A

d
e
g

1
0
.8
5
1

1
0
.4
1
0

—
1
0
.1
9
3

c
ru

is
e
A
o
A

d
e
g

7
.1
0

[7
.0
9
,
6
.9
2
,
7
.2
6
,
6
.7
8
,
7
.4
2
]

—
6
.7
8

c
li
m
b

A
o
A

d
e
g

—
—

—
1
0
.6
1
4

s
u
b
je

c
t

t
o

2
.5
g

fa
il
u
re

0
.0
0
0

3
.3

×
1
0

−
7

1
.3

×
1
0

−
8

2
.0

×
1
0

−
6

8
.1

×
1
0

−
9

m
a
n
e
u
v
e
r

L
=

W
0
.0
0
0

0
.0
0
0

1
.0

×
1
0

−
9

−
5
.6

×
1
0

−
1
0

—
−

2
.3

×
1
0

−
1
0

c
ru

is
e

L
=

W
0
.0
0
0

0
.0
0
0

−
5
.3

×
1
0

−
9

−
3
.0

×
1
0

−
1
0
]

−
3
.0

×
1
0

−
1
0
,−

3
.0

×
1
0

−
1
0
,

[−
3
.0

×
1
0

−
1
0
,

−
3
.0

×
1
0

−
1
0
,

—
−

1
.8

×
1
0

−
1
0

c
li
m
b

L
=

W
0
.0
0
0

0
.0
0
0

—
—

—
−

1
.4

×
1
0

−
1
0

T
a
b
le

8
:

O
p
ti

m
iz

a
ti

o
n

re
su

lt
s

fo
r

th
e

3
0
0

n
m

i
(t

o
p
),

1
,5

0
0

n
m

i
(m

id
d
le

),
a
n
d

2
,9

0
0

n
m

i
(b

o
tt

o
m

)
m

is
si

o
n
s

25



Acknowledgments

The first author is supported by the Department of Defense (DoD) through the National Defense
Science and Engineering Graduate (NDSEG) Fellowship Program and in part by the Michigan
Institute for Computational Discovery and Engineering (MICDE) Graduate Fellowship program.
The first author would also like to thank Alasdair Christison Gray and Adam Wasserman for their
insightful comments and suggestions.

References

[1] Haftka, R. T., “Optimization of Flexible Wing Structures Subject to Strength and Induced
Drag Constraints,” AIAA Journal, Vol. 15, No. 8, 1977, pp. 1101–1106. https://doi.org/10.
2514/3.7400.

[2] Kenway, G. K. W., Kennedy, G. J., and Martins, J. R. R. A., “Aerostructural Optimization of
the Common Research Model Configuration,” 15th AIAA/ISSMO Multidisciplinary Analysis
and Optimization Conference, Atlanta, GA, 2014. https://doi.org/10.2514/6.2014-3274, aIAA
2014-3274.

[3] Martins, J. R. R. A., Alonso, J. J., and Reuther, J. J., “High-Fidelity Aerostructural Design
Optimization of a Supersonic Business Jet,” Journal of Aircraft, Vol. 41, No. 3, 2004, pp.
523–530. https://doi.org/10.2514/1.11478.

[4] Kenway, G. K. W., and Martins, J. R. R. A., “Multipoint High-Fidelity Aerostructural Opti-
mization of a Transport Aircraft Configuration,” Journal of Aircraft, Vol. 51, No. 1, 2014, pp.
144–160. https://doi.org/10.2514/1.C032150.

[5] Yanto, J., and Liem, R. P., “Aircraft fuel burn performance study: A data-enhanced modeling
approach,” Transportation Research Part D: Transport and Environment, Vol. 65, 2018, p.
574–595. https://doi.org/10.1016/j.trd.2018.09.014.

[6] Kroo, I., and Shevell, R., “Aircraft design: Synthesis and analysis,” Desktop Aeronautics Inc.,
Textbook Version 0.99, 2001.

[7] Lee, H., and Chatterji, G. B., “Closed-Form Takeoff Weight Estimation Model for Air Trans-
portation Simulation,” 10th AIAA Aviation Technology, Integration, and Operations (ATIO)
Conference, Fort Worth, TX, 2010. https://doi.org/10.2514/6.2010-9156.

[8] Bons, N. P., Mader, C. A., Martins, J. R. R. A., Cuco, A. P. C., and Odaguil, F. I. K.,
“High-Fidelity Aerodynamic Shape Optimization of a Full Configuration Regional Jet,” 2018
AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Kissim-
mee, FL, 2018. https://doi.org/10.2514/6.2018-0106.

[9] Liem, R. P., Mader, C. A., Lee, E., and Martins, J. R. R. A., “Aerostructural design optimiza-
tion of a 100-passenger regional jet with surrogate-based mission analysis,” 2013 Aviation Tech-
nology, Integration, and Operations Conference, 2013. https://doi.org/10.2514/6.2013-4372.

[10] Bons, N. P., “High-fidelity Wing Design Exploration with Gradient-based Optimization,”
Ph.D. thesis, University of Michigan, Ann Arbor, MI, May 2020.

[11] Chau, T., and Zingg, D., “Fuel burn evaluation of a transonic strut-braced-wing regional
aircraft through multipoint aerodynamic optimisation,” The Aeronautical Journal, 2022, pp.
1–25. https://doi.org/10.1017/aer.2022.64.

26

https://doi.org/10.2514/3.7400
https://doi.org/10.2514/3.7400
https://doi.org/10.2514/6.2014-3274
https://doi.org/10.2514/1.11478
https://doi.org/10.2514/1.C032150
https://doi.org/10.1016/j.trd.2018.09.014
https://doi.org/10.2514/6.2010-9156
https://doi.org/10.2514/6.2018-0106
https://doi.org/10.2514/6.2013-4372
https://doi.org/10.1017/aer.2022.64


[12] Clarke, M. A., Erhard, R. M., Smart, J. T., and Alonso, J., “Aerodynamic Optimization of
Wing-Mounted Propeller Configurations for Distributed Electric Propulsion Architectures,”
AIAA Aviation 2021 Forum, American Institute of Aeronautics and Astronautics, 2021.
https://doi.org/10.2514/6.2021-2471, URL http://arc.aiaa.org/doi/10.2514/6.2021-2471.

[13] Jasa, J. P., Hwang, J. T., and Martins, J. R. R. A., “Open-source coupled aerostructural
optimization using Python,” Structural and Multidisciplinary Optimization, Vol. 57, No. 4,
2018, pp. 1815–1827. https://doi.org/10.1007/s00158-018-1912-8.

[14] Brelje, B. J., and Martins, J. R. R. A., “Development of a Conceptual Design Model for Aircraft
Electric Propulsion with Efficient Gradients,” Proceedings of the AIAA/IEEE Electric Aircraft
Technologies Symposium, Cincinnati, OH, 2018. https://doi.org/10.2514/6.2018-4979.

[15] McCullers, L. A., “Aircraft configuration optimization including optimized flight profiles,”
NASA. Langley Research Center Recent Experiences in Multidisciplinary Analysis and Opti-
mization, Part 1, 1984, pp. 395–412. N87-11743.

[16] Welstead, J. R., Caldwell, D., Condotta, R., and Monroe, N., “An Overview of the Layered
and Extensible Aircraft Performance System (LEAPS) Development,” 2018 AIAA Aerospace
Sciences Meeting, 2018.

[17] Botero, E. M., Wendorff, A., MacDonald, T., Variyar, A., Vegh, J. M., Lukaczyk, T. W.,
Alonso, J. J., Orra, T. H., and Ilario da Silva, C., “SUAVE: An open-source environment for
conceptual vehicle design and optimization,” 54th AIAA aerospace sciences meeting, 2016.

[18] Trawick, D., Perullo, C., Armstrong, M., Snyder, D., Tai, J. C. M., and Mavris, D. N.,
“Development and application of GT-HEAT for the electrically variable engine (TM) design,”
55th AIAA Aerospace Sciences Meeting, 2017. https://doi.org/10.2514/6.2017-1922.

[19] Botero, E. M., and Alonso, J. J., “Conceptual design and optimization of small transitioning
uavs using SUAVE,” 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Con-
ference, 2017, p. 4149.

[20] Brelje, B. J., Jasa, J. P., Martins, J. R. R. A., and Gray, J. S., “Development of a Conceptual-
Level Thermal Management System Design Capability in OpenConcept,” NATO Research
Symposium on Hybrid/Electric Aero-Propulsion Systems for Military Applications (AVT-RSY-
323), Trondheim, NO, 2019. https://doi.org/10.14339/STO-MP-AVT-323.

[21] Adler, E. J., Brelje, B. J., and Martins, J. R. R. A., “Thermal Management System Optimiza-
tion for a Parallel Hybrid Aircraft Considering Mission Fuel Burn,” Aerospace, Vol. 9, No. 5,
2022. https://doi.org/10.3390/aerospace9050243.

[22] Gladin, J. C., Trawick, D., Perullo, C., Tai, J. C., and Mavris, D. N., “Modeling and design
of a partially electric distributed aircraft propulsion system with GT-HEAT,” 55th AIAA
Aerospace Sciences Meeting, 2017.

[23] Liem, R. P., Kenway, G. K. W., and Martins, J. R. R. A., “Multimission Aircraft Fuel Burn
Minimization via Multipoint Aerostructural Optimization,” AIAA Journal, Vol. 53, No. 1,
2015, pp. 104–122. https://doi.org/10.2514/1.J052940.

[24] Hwang, J. T., Jasa, J. P., and Martins, J. R. R. A., “High-fidelity design-allocation optimiza-
tion of a commercial aircraft maximizing airline profit,” Journal of Aircraft, Vol. 56, No. 3,
2019, pp. 1164–1178.

27

https://doi.org/10.2514/6.2021-2471
http://arc.aiaa.org/doi/10.2514/6.2021-2471
https://doi.org/10.1007/s00158-018-1912-8
https://doi.org/10.2514/6.2018-4979
https://doi.org/10.2514/6.2017-1922
https://doi.org/10.14339/STO-MP-AVT-323
https://doi.org/10.3390/aerospace9050243
https://doi.org/10.2514/1.J052940


[25] Variyar, A., Economon, T. D., and Alonso, J. J., “Multifidelity conceptual design and opti-
mization of strut-braced wing aircraft using physics based methods,” 54th AIAA Aerospace
Sciences Meeting, 2016.

[26] Jasa, J. P., Hwang, J. T., and Martins, J. R. R. A., “Design and trajectory optimization of a
morphing wing aircraft,” 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and
Materials Conference, 2018, p. 1382.

[27] Gray, J. S., Hwang, J. T., Martins, J. R. R. A., Moore, K. T., and Naylor, B. A., “OpenMDAO:
An open-source framework for multidisciplinary design, analysis, and optimization,” Structural
and Multidisciplinary Optimization, Vol. 59, No. 4, 2019, pp. 1075–1104. https://doi.org/10.
1007/s00158-019-02211-z.

[28] Hwang, J. T., and Martins, J. R. R. A., “A computational architecture for coupling hetero-
geneous numerical models and computing coupled derivatives,” ACM Transactions on Math-
ematical Software, Vol. 44, No. 4, 2018, p. Article 37. https://doi.org/10.1145/3182393.

[29] Hendricks, E. S., and Gray, J. S., “pyCycle: A Tool for Efficient Optimization of Gas Turbine
Engine Cycles,” Aerospace, Vol. 6, No. 87, 2019. https://doi.org/10.3390/aerospace6080087.

[30] Lambe, A. B., and Martins, J. R. R. A., “Extensions to the Design Structure Matrix for the
Description of Multidisciplinary Design, Analysis, and Optimization Processes,” Structural
and Multidisciplinary Optimization, Vol. 46, No. 2, 2012, pp. 273–284. https://doi.org/10.
1007/s00158-012-0763-y.

[31] Nita, M., and Scholz, D., “Estimating the Oswald Factor from Basic Aircraft Geometrical
Parameters,” Deutscher Luft- und Raumfahrtkongress, Berlin, Germany, 2012.

[32] Raymer, D. P., Aircraft Design: A Conceptual Approach, American Institute of Aeronautics
and Astronautics, 1992.

[33] Chauhan, S. S., and Martins, J. R. R. A., “Low-Fidelity Aerostructural Optimization of Air-
craft Wings with a Simplified Wingbox Model Using OpenAeroStruct,” Proceedings of the
6th International Conference on Engineering Optimization, EngOpt 2018, Springer, Lisbon,
Portugal, 2018, pp. 418–431. https://doi.org/10.1007/978-3-319-97773-7 38.

[34] Brooks, T. R., Kenway, G. K. W., and Martins, J. R. R. A., “Undeflected Common Research
Model (uCRM): An Aerostructural Model for the Study of High Aspect Ratio Transport
Aircraft Wings,” 18th AIAA/ISSMO Multidisciplinary Analysis and Optimization Conference,
Denver, CO, 2017. https://doi.org/10.2514/6.2017-4456.

[35] Virtanen, P., Gommers, R., Oliphant, T. E., Haberland, M., Reddy, T., Cournapeau, D.,
Burovski, E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S. J., Brett, M., Wilson,
J., Millman, K. J., Mayorov, N., Nelson, A. R. J., Jones, E., Kern, R., Larson, E., Carey,
C. J., Polat, b., Feng, Y., Moore, E. W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman,
R., Henriksen, I., Quintero, E. A., Harris, C. R., Archibald, A. M., Ribeiro, A. H., Pedregosa,
F., van Mulbregt, P., and SciPy 1.0 Contributors, “SciPy 1.0: Fundamental Algorithms for
Scientific Computing in Python,” Nature Methods, Vol. 17, 2020, pp. 261–272. https://doi.
org/10.1038/s41592-019-0686-2.

[36] Liem, R. P., Mader, C. A., and Martins, J. R. R. A., “Surrogate Models and Mixtures of
Experts in Aerodynamic Performance Prediction for Aircraft Mission Analysis,” Aerospace
Science and Technology, Vol. 43, 2015, pp. 126–151. https://doi.org/10.1016/j.ast.2015.02.019.

28

https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.1007/s00158-019-02211-z
https://doi.org/10.1145/3182393
https://doi.org/10.3390/aerospace6080087
https://doi.org/10.1007/s00158-012-0763-y
https://doi.org/10.1007/s00158-012-0763-y
https://doi.org/10.1007/978-3-319-97773-7_38
https://doi.org/10.2514/6.2017-4456
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1038/s41592-019-0686-2
https://doi.org/10.1016/j.ast.2015.02.019


[37] Kao, J. Y., Hwang, J. T., Martins, J. R. R. A., Gray, J. S., and Moore, K. T., “A Modular
Adjoint Approach to Aircraft Mission Analysis and Optimization,” Proceedings of the AIAA
Science and Technology Forum and Exposition (SciTech), Kissimmee, FL, 2015. AIAA 2015-
0136.

[38] Kreisselmeier, G., and Steinhauser, R., “Systematic Control Design by Optimizing a Vector
Performance Index,” International Federation of Active Controls Symposium on Computer-
Aided Design of Control Systems, Zurich, Switzerland, 1979. https://doi.org/10.1016/
S1474-6670(17)65584-8.

[39] Lambe, A. B., Martins, J. R. R. A., and Kennedy, G. J., “An Evaluation of Constraint
Aggregation Strategies for Wing Box Mass Minimization,” Structural and Multidisciplinary
Optimization, Vol. 55, No. 1, 2017, pp. 257–277. https://doi.org/10.1007/s00158-016-1495-1.

[40] Kenway, G. K. W., and Martins, J. R. R. A., “Multipoint Aerodynamic Shape Optimization
Investigations of the Common Research Model Wing,” AIAA Journal, Vol. 54, No. 1, 2016,
pp. 113–128. https://doi.org/10.2514/1.J054154.

[41] Gill, P. E., Murray, W., and Saunders, M. A., “SNOPT: An SQP Algorithm for Large-Scale
Constrained Optimization,” SIAM Review, Vol. 47, No. 1, 2005, pp. 99–131. https://doi.org/
10.1137/S0036144504446096.

[42] Roskam, J., Airplane Design, 2nd ed., Vol. 1-8, DARCorporation, Ottawa, KS, 1998.

[43] Chiba, K., Obayashi, S., and Nakahashi, K., “High-Fidelity Multidisciplinary Design Optimiza-
tion of Aerostructural Wing Shape for Regional Jet,” Proceedings of the 23rd AIAA Applied
Aerodynamics Conference, Toronto, ON, Canada, 2005.

[44] Hale, F. J., “Best-range flight conditions for cruise-climb flight of a jet aircraft,” NASA. Langley
Res. Center Advan. in Eng. Sci., Vol. 4, 1976.

29

https://doi.org/10.1016/S1474-6670(17)65584-8
https://doi.org/10.1016/S1474-6670(17)65584-8
https://doi.org/10.1007/s00158-016-1495-1
https://doi.org/10.2514/1.J054154
https://doi.org/10.1137/S0036144504446096
https://doi.org/10.1137/S0036144504446096

	1 Introduction
	2 Models and methods
	3 Optimization
	4 Discussion
	5 Sequential Bréguet range: a low-cost improvement for high-fidelity optimizations
	6 Conclusions
	A Appendix

