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Abstract In many large engineering design problems, it is not computationally feasi-
ble or realistic to store Jacobians or Hessians explicitly. Matrix-free implementations
of standard optimization methods—implementations that do not explicitly form Ja-
cobians and Hessians, and possibly use quasi-Newton approximations—circumvent
those restrictions but such implementations are virtually non-existent. We develop
a matrix-free augmented-Lagrangian algorithm for nonconvex problems with both
equality and inequality constraints. Our implementation is developed in the Python lan-
guage, is available as an open-source package, and allows for approximating Hessian
and Jacobian information. We show that it is competitive with existing state-of-the-art
solvers on the CUTEr (Gould, Orban, and Toint, [2003)) and COPS (Bondarenko, Bortz!
and Mor¢) collections. We report numerical results on a structural design problem
inspired by aircraft wing design. The matrix-free approach makes solving problems
with thousands of design variables and constraints tractable, even if function and
gradient evaluations are costly.

1 Introduction

Aerospace engineered systems have been a prime target for the application of nu-
merical optimization due to the large impact that weight reduction has on system
performance. This is evident in the fuel mass required to launch a satellite into orbit
and in the operating cost of modern transport aircraft, where the primary cost driver is
the price of fuel.
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One of the first such applications by aerospace engineers was structural design
optimization, first proposed by |Schmit (1960). The field was made possible by the
advent of the finite-element method for structural analysis (Argyris| [1954; Turner.
Clough, Martin, and Toppl |1956)), which enabled engineers to analyze much more
complex geometries than was possible with analytic methods.

This work is motivated by aircraft wing design optimization using coupled, high-
fidelity physics-based models of aerodynamics and structures (Kenway, Kennedy:
and Martins| 2014} [Kenway and Martins, |2014). In such problems, the objective,
constraints, and derivative evaluations are expensive because of the expense of the
aerodynamic and structural analyses.

The design optimization problem of interest can be stated in the general form

minimize f(x) subjectto ¢(x) =0, £ <x<u, (NLP)
x€R”

where f:R" — R and ¢ : R" — R™ are twice continuously differentiable. For the
time being, it is sufficient to note that any nonlinear program may be reformulated as
(NLP).

Kennedy and Martins|(2015) and |Kenway and Martins|(2014) solve aircraft design
problems based on using general-purpose Sequential Quadratic Programming
(SQP) software, such as SNOPT (Gill, Murray, and Saunders, [2002). This approach
is particularly effective when used in conjunction with the adjoint method, which
computes first derivatives efficiently (Kenway and Martins| 2014} Lyu and Martins,
2014} Lyu, Kenway, and Martins}, 2015).

Structural design optimization problems often include both a large number of
constraints (e.g., a failure criterion for each structural element), and a large number of
variables (e.g., the thickness of each structural element). In addition, the constraint
Jacobian is typically dense because the structures being optimized are statically
indeterminate—the static equilibrium equations alone are not sufficient to compute the
stress in each element of the structure. As a result, the stress in a given element depends
not only on the properties of that element, but also on how the load is transmitted
throughout the structure. In consequence, each failure constraint depends on many
design variables.

To make a factorization-based SQP approach feasible, Poon and Martins| (2007)
aggregate constraints. The technique is effective for solving problems with hundreds
of structural failure constraints (Kenway and Martins} 2014; Kennedy and Martins,
2013)) but causes the final structural mass to be overestimated because the objective is
minimized on a subset of the feasible region (Poon and Martins, |[2007).

There is a need for an optimization approach that does not require aggregation, yet
is still computationally efficient in the presence of dense Jacobians, and a matrix-free
approach is the natural choice. However, providing a matrix-free implementation
of an SQP or interior-point method is not straightforward, and the current state of
optimization software is insufficient. The handling of inequality constraints and bounds
presents a particular challenge. Recent work studying engineering applications of
matrix-free optimization (Hicken| 2014} |Dener, Kenway, Lyu, Hicken, and Martins,
2015)) was restricted to problems with only equality constraints.
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A matrix-free SQP method would compute steps as inexact minimizers of quadratic
programs with both linear equality and bound constraints. If bound constraints are kept
explicit as in SNOPT, each SQP subproblem is a quadratic program with both equality
and inequality constraints, and it is not immediately apparent how to solve such
problems efficiently using a matrix-free method, even if they are convex. If the bounds
are enforced by way of a logarithmic barrier, as in, for example, IPOPT (Wichter
and Biegler}, 2006) or KNITRO (Byrd, Nocedal, and Waltz,[2006)), the subproblems
are equality-constrained quadratic programs. KNITRO adds a trust-region constraint
to those subproblems in order to guarantee global convergence and solves them by
way of the projected conjugate-gradient method |Gould, Hribar, and Nocedal| (2001)).
Unfortunately, the latter requires accurate projections into the nullspace of the linear
equality constraints and this is best achieved if the Jacobian is explicitly available.

A matrix-free interior-point method of the trust-region type (Conn, Gould, and
Toint, [2000) would compute steps as inexact minimizers of equality-constrained
quadratic programs with increasingly ill-conditioned Hessians. A line search variant
might employ an inexact Newton strategy on an appropriate formulation of the Newton
equations. Numerous formulations are possible and are not necessarily increasingly ill-
conditioned (Greif, Moulding, and Orban, |2014)), but must nevertheless be adequately
preconditioned. Both must ensure that the next iterate remains a safe distance from
the boundary.

One area in which progress has been made is in the development of suitable itera-
tive methods for solving indefinite linear systems. |Arioli and Orban|(2013) propose
families of iterative methods that are suitable for matrix-free SQP or interior-point
methods. Building upon those methods, |Arreckx and Orban| (2014)) describe a matrix-
free implementation of a fully-regularized SQP-type method for equality-constrained
problems related to that of /Armand, Benoist, and Orban| (2012), and highlight its
relationship with the standard augmented Lagrangian method. Previously, |Gill and
Robinson| (2013)) highlighted relationships between a primal-dual augmented La-
grangian and regularized SQP methods.

The augmented-Lagrangian method may be simpler to implement as it requires
the approximate solution of a sequence of reasonably-conditioned bound-constrained
subproblems. The subproblem solutions are used to update estimates of the Lagrange
multipliers for the constraints of (NLP). Direction-finding subproblems involve solving
linear systems with a coefficient matrix of the form H = B+ pJ ], where p>0is
a penalty parameter. Efficient iterative methods, typically variants of the conjugate-
gradient method, are available for this type of system. Indeed if B is positive semi-
definite and J has full row rank, H is symmetric and positive definite. Note that
operator-vector products with H require operator-vector products with the constraint
Jacobian and its adjoint, an operation that is often available in practical large-scale
applications. The main disadvantage is that augmented-Lagrangian methods typically
do not exhibit the favorable local convergence properties of SQP methods. However,
the ease with which bound constraints and inequality constraints can be treated in
the algorithm provides us with a convenient starting point for experimenting with
matrix-free optimization.

Augmented Lagrangian methods are a staple of the optimization library of numeri-
cal methods. It would be impossible to give a complete list of references here. We refer
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the reader to the general textbooks of |[Bertsekas| (1982)), Conn et al.| (2000) and No+
cedal and Wright| (20006) for a thorough literature review and a complete convergence
analysis.

The algorithm proposed in this paper is released as part of the open-source package
NLPy (Orban,|[2014), a programming environment for designing numerical optimiza-
tion methods written in the Python programming language.

Few other implementations of the augmented Lagrangian method exist. Amongst
them MINOS (Murtagh and Saunders| |1978},2003), LANCELOT (Conn, Gould, and
Toint, [1992), and ALGENCAN (Andreani, Birgin, Martinez, and Schuverdt, [2008) are
the most widely used. MINOS takes advantage of linear constraints in the problem
and, like SNOPT, is a commercial product. LANCELOT is designed to exploit the
group-partially separable structure of the objective and constraints in order to gain
efficiency when dealing with large sparse problems, which makes the code arduous to
modify. Although LANCELOT does not strictly require forming Jacobians, its imple-
mentation is not matrix-free. The main algorithmic difference between LANCELOT
and ALGENCAN resides in the way they handle inequalities. Contrary to LANCELOT,
which replaces inequalities by equality constraints by way of slack variables, ALGEN-
CAN keeps inequalities intact, and uses the Powell-Hestenes-Rockafellar (Rockafellar]
1973) augmented Lagrangian function, which leads to discontinuous second derivatives
in the objective of the subproblems.

Gawlik, Munson, Sarich, and Wild| (2012)) develop a linearly-constrained aug-
mented Lagrangian method for solving partial differential equation (PDE) constrained
optimization problems as part as the Toolkit for Advanced Optimization (TAO) (Mun+
son, Sarich, Wild, Benson, and McInnes},|2012). Their matrix-free method only handles
equality constraints.

We now introduce the notation used in the remainder of this paper. The i-th
component of the vector x is x;, whereas x* or ¥/ stands for the vector x at outer
iteration k or inner iteration (k, j). Unless explicitly specified, the norm used in this
paper is the infinity norm ||x||.,. Define the Lagrangian

L(x,A) = f(x)—i—),Tc(x), (1)

where A € R™ is the current approximation to the vector of Lagrange multipliers
associated to the equality constraints of (NLP). The augmented Lagrangian function is

D(x;:2,p) =L (x.2) + 3plc()|I3: 2)

We separate A and p from x by a semicolon in the arguments of & to indicate that
they are treated as parameters, and that @ is really a function of the primal variables x.
For future reference, note that

V. DA, p) =V LxA+pcx)+pJ(x) T(x). 3)
Finally, P (%) is the projection of the vector X € R" into the set of simple bounds
Q= {xeR”MSxSu},

and is defined componentwise as Pp (¥); = median(¢;, %;,u;) fori=1,...,n.



Matrix Free Augmented Lagrangian 5

The rest of this paper is organized as follows. Section [2]is devoted to a detailed
description of our matrix-free algorithm and its implementation in the Python language.
We provide numerical results on standard test problems in order to validate our
implementation and to compare it to existing software. In Section [3| we explore in
further detail the structural design optimization problem, and show the benefits of
the matrix-free approach over SNOPT. Conclusions and future work are discussed in
Section ]

2 A Matrix-Free Augmented Lagrangian
2.1 Algorithmic Details

In this section, we briefly cover the algorithmic details of our augmented Lagrangian
framework. Although the framework itself is standard and well known, the description
allows us to highlight certain algorithmic choices and relate them to implementation
specifics described in §2.2]

The k-th outer iteration of the augmented-Lagrangian algorithm consists in ap-

proximately solving the subproblem

minig}ize @(x;lk,pk) subject to £ < x < u, 4

xXe

for fixed values of A* and pk. We enforce satisfaction of the bound constraints ex-
plicitly in the subproblem. Each subproblem solution is followed by updates to Ak,
pk, and subproblem stopping tolerances. Those updates are typically based on the im-
provement in constraint violation achieved in the most recent subproblem. Algorithm|[T]
summarizes this process, and follows Nocedal and Wright| (2006, Algorithm 17.4) and
Conn et al.|(1992). The parameter updates in Step 4] are classic and follow updates
implemented in LANCELOT (Conn et al.,[1992) and ALGENCAN (Andreani et al.|
2008).

At every outer iteration, (@) must be solved efficiently. In our implementation, two
options are available. The first option follows LANCELOT and uses the method of
Moré and Toraldo| (1989)). The iterate at the j-th inner iteration corresponding to the
k-th outer iteration will be denoted /. We begin by building a quadratic model g; of
& about x*/: ' '

q;(p) ==V, (725, ") p+ 1 p" B p,

where B/ is a symmetric approximation of V, @ (x*/; 1¥, p*) that need not be definite.

Our implementation allows B/ to be defined as limited-memory BFGS or SR1
approximations (Nocedal and Wright, 2006). The step p’ is then obtained as an
approximate solution of the bound-constrained quadratic program

minimize q;(p) subjectto p € £ ; 9
peR” ’

where Q; ; ;= {p € R" | X 4 peQand||p|l.. <A’} and A’ > 0 is the current

trust-region radius. Note that £ ; is itself a box and there exist /%7 and W such that
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Algorithm 1 Outer Iteration—AUGLAG

1: Tnitialize x° € Q, 20e R", pO >1, ©’>0and 1]0 > 0. Choose stopping tolerances €, > 0 and g, > 0.
Setk = 0.
2: If the stopping conditions

W = Po( -V, 2 A" < g and ()] <.

are satisfied, terminate with (xk, lk) as final solution. Otherwise continue to step
3: Compute K by approximately solving (@) and stopping as soon as

ka+1 — Py (xk+l —V’\.¢()Ck+] ;lk,pk))Hm < (L)k.

4: If e (")) < 1", set

e :lk+pkc(xk+l)7 pFH! = pk )
nk+1 _ nk/(pk+1)0.97 o = wk/pkﬂ. ®)

Otherwise, set
AR /'Lk, pk+1 _ 10pk, D
nk+1 :0,1/(pk+1)0‘1, ot = l/pkﬂ. ®)

Increase k by 1 and return to step2}

Qi ={xeR"| < x < }. The step p’ is accepted or rejected and the radius A
is updated following the standard trust-region criteria (Conn et al.|[2000). Algorithm 2]
summarizes the main steps involved in the inner iteration.

Algorithm 2 Inner Iteration—SBMIN

1: Choose A® > 0,0< ¢ <& < 1,and0< 7 < 1 <. Set j = 0. Choose an initial guess x**° € Q.
2: If

k.j k.j kj. gk K k
[ = Po () = V(™47 p"))||. < @,

terminate with ¥ ! := x*/_ Otherwise continue to Step

3: Choose B/ symmetric and compute p’ as an approximate solution of (9).
4: Compute <1>(xk‘] +pj;lk,pk) and define
k.j iy k ok kj.yk k
i P +phANp) — (A" p)

roi= - - .

7' (p")
If > g1, then set P AR +pj, otherwise set X771 = x*7.
5: Update the trust-region radius
. Yl”l’””«» ifrj. <&
A =0 AT if /€ [g,8)

max{A’ | p’|l..} otherwise.

Increment j by one and return to step[2]
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In Algorithm the initial guess K0 may be simply set to the current outer iterate
¥ or to a better approximation if one is available. In Step pj is computed using a
simple extension of the method of [ Moré and Toraldo| (1991) to nonconvex quadratic
programs. In contrast with the trust-region subproblem solver used in LANCELOT,
the method of Moré¢ and Toraldo| (1991) allows the additions of many constraints at a
time to the active-set estimate 7 (x) := {i | x; = éf’] orx; = uf’] }.
The face of £ ; containing x is defined as
F.:= {y €EQilyi=xifx; = 057 or uf’} :
The active-set method is divided into two stages. In the first stage, a projected gradient
search is used to select a face of .Qk7 j that will act as a prediction of the optimal active
set of (9). In the second stage, a reduced quadratic model § is formed involving only

the free variables from the selected face, that is the components of p that are not at
their bounds. This model may be written

g(v) :==q(p+2w),

where Z, is a prolongation operator consisting of columns of the identity that maps F,
to R".

This reduced quadratic is then approximately minimized unconstrained using the
conjugate gradient method to yield a search direction d = Z,v. If a direction of negative
curvature is detected during the conjugate gradient iterations, we follow this direction
to the boundary of € ;. A projected line search is then performed along d to ensure
sufficient decrease, and satisfaction of the bound and trust-region constraints. Both
the projected gradient search and the conjugate gradient algorithm are designed to
terminate early and promote fast progress. We employ the same stopping conditions
as|[Moré¢ and Toraldo| (1991)).

The binding set at x is defined by

B(x) = {i| (x; = €57 and d,g(x) > 0), or (x; = 1"/ and Jq(x) < 0)}.

If the binding set at the iterate resulting from the projected search along the conjugate
gradient direction coincides with the active set identified in the first stage, the conjugate
gradient iterations are resumed to enforce further descent. Algorithm [3|summarizes
the main steps involved in this active-set method. We refer the reader to (Moré and
Toraldo}, [1991) for more details on projected searches.

In practice, several improvements related to the management of the trust region
can increase the efficiency of Algorithm 2] Two such improvements turned out to be
effective in our implementation. The first is a non-monotone descent strategy (Toint,
1997)). As described, Algorithmenforces a monotone descent in ®(-;A%, p*). Ina
non-monotone trust-region algorithm, a trial point may be accepted even if it results in
an increase in ®. However, a sufficient decrease is required after a prescribed number
of iterations, which is 10 in our implementation.

The second improvement is the simplified version of the backtracking strategy of
Nocedal and Yuan|(1998)) described by Conn et al.| (2000). If p’ is rejected at Step@
of Algorithm we perform an Armijo line search along p’ instead of recomputing a
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Algorithm 3 BQP
1: Sett=0. Choose k and {. Compute a feasible starting point p0 for ().
2: If

0
16 = Pay (7' = Va; (0o < 7l1Va; (0]l
terminate with p'. Otherwise continue to Step
3: Generate projected gradient iterates w" starting with w’ = P until either

AW = (W) or g(w"!) —q(w") <k max {q(w ") —q(w)}.

1<r<m

4: Generate conjugate gradient iterates v' to minimize § on F,» starting from 0 = 0 until

aros—1\ s ar r—1y A
q0") —q(v") <& max {g(v"7) —4(v")}
1<r<s
or negative curvature is detected. Let d = Z, n (v' — V).
5: If d is a direction of negative curvature, find the smallest ¥ > 0 such that p’ + ¥d is at the boundary of
£ ;- Otherwise perform a projected line search to find a step length 7 that satisfies an Armijo condition.
6: Set p'tl = Py, ,(p' +1d).
7: If @(p”l) = (pt“), tighten £ and go back to Step restarting the iterations from v*.
8: Increment ¢ by one and return to step@

new trust-region step. We impose a maximum of five backtracking iterations. If the
line search is unsuccessful, x*/ remains the current iterate, the trust-region radius is
reduced, and a new trust-region step is computed.

The second option to solve (4)) is to use an existing method for bound-constrained
problems, and our method of choice for this task is TRON (Lin and Moré}, [1998).
TRON is an active-set method similar in spirit to the method of Moré and Toraldo
(1991)) that iteratively determines a current working set by way of a projected gradient
method, and explores faces of the feasible set using a Newton trust-region method.
In its default implementation, TRON has the significant disadvantage that it requires
the explicit Hessian in order to compute an incomplete Cholesky preconditioner to
speed up the conjugate gradient iterations. We modified TRON so that only Hessian-
vector products are required. In this case, the incomplete Cholesky factorization is
made impossible, and no preconditioner is used in the conjugate gradient iterations.
However, this modification to the source code also allows us to use quasi-Newton
approximations of the Hessian.

2.2 Implementation

We implement Algorithms[TH3]in the Python language as part of the NLPy develop-
ment environment for linear and nonlinear optimization (Orban, 2014)). Optimization
problems are only accessed to evaluate the objective and its gradient, and to compute
operator-vector products with the Hessian of .#(x, 1) and the constraint Jacobian.
NLPy is open source and available at https://github.com/dpo/nlpy.

First derivatives must be provided. Second derivatives may be provided if they
are available. However, in some applications, such as that described in Section
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the Hessian of the augmented Lagrangian cannot be computed even in the form of
Hessian-vector products, and we must be content with quasi-Newton approximations.
Following the notation of Martinez|(1988)), the Broyden class of secant updates can be
written as ' ' '

SEITL = R 4 Ay (5,7, 857 v), (10)

where S/ and S/t are the current and updated approximations, respectively,

—Ss vT—l—v —ss)T —ss)7s
Ayl y, S,y = L= V=S -8 s, r (11)
v's (v's)

for some choice of v € R”, called the scale of the update, and s := KT kT The
vector y is chosen so that the update SHIT satisfies a secant equation shitlg = y.In
the BFGS and SR1 updates, v is defined by v =y + (yTs/sTSs)%Ss and v =y —Ss,
respectively.

For conciseness, in the following, we denote Vf; ; := Vf(xk’j), Jej = J(xk’j),
and ¢; ; == c(x; ;). If ¢ : R" — R" is a smooth function such that SEIT should
approximate V@ (x*/ 1), then the choice y := @(x*/™) — @(x*) is appropriate. The
first possibility is to ask S/ to approximate Vxxcb(xk’j Ak pk ), and in that case, we
should select

yi= V(25 ph) = v,k o)
B T kok T 2k, k
=Vfiji1 = Vit it (A"+p e ji1) =i j(A"+p e )

However, approximating (3) as a monolithic Hessian without exploiting its structure
leads to poor numerical behavior. Because we assume that exact first derivatives
are available, products with J(x) and J(x)" may be evaluated, and it remains to
approximate the Hessian of (I, as suggested by [Dennis Jr. and Walker (1981) in the
context of nonlinear least-squares problems using the DFP secant method. Martinez
(1988)) generalizes this DFP Hessian approximation to the Broyden class of secant
methods, in particular to BFGS and SR1. In view of (3)), the structured quasi-Newton
update takes the form

kj+l kjtl, ok k kj+l ok | ok kT
B V&M pb) = Vo LT A+ p e ) 0 T Tt

JHl L gkt kit

We therefore set B* + ka,Z j+1Jk,j+1 and we seek an update §
Vxxf(xk:j"rl , zflg’j+1)
The relevant function @ is now @(x) := V.2 (x, ),ku
tion is then

that satisfies a secant equation, where llijJrl =AM+ pkck,H].

j +1). The appropriate secant equa-

ity y
=V LA v 28 A 12
=V, Z(x 7k,j+1) L (x 7k,j+1) 12)
T ok, k
= Vi1 = Vi + Ui —Jij) A +p e i)

The updated S/ *! is then defined as in (T0).
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In practice, AUGLAG accepts problems with a mixture of general equality and
inequality constraints and transforms the latter into non-negativity constraints, i.e.,
ce(x) =0and ¢ ~(x) > 0. We subsequently add slack variables to obtain constraints
of the form

ce(x)=0, cy(x)—t=0, t>0, {<x<u.

The augmented Lagrangian (2)) becomes

2
: . r| cs(x) 1 cg(x)
D(x,t;A,p) = f(x)+A [Cj(x) _t] + zp‘ [Cj(x) -
The latter augmented Lagrangian is iteratively minimized subject to the bounds ¢ > 0,
{<x<u.
In the presence of inequalities, ®(x,-;A,p) is a convex quadratic function of
t. Every time Algorithm [2]identifies a new inner iterate (x*/,#“/), we may further

minimize @ in ¢ subject to r > 0. This yields the magical step (Conn, Vicente, and
Visweswariah, [1999; (Conn et al., |2000])

2

f; *= max (07 )’S’ —I—c,-(xk’j)) , €Y.

Finally, our solver may perform an automatic scaling of the problem. This proce-
dure closely follows the one provided in IPOPT (Wichter and Biegler} [2006)), which
is a scalar rescaling of the objective and constraint functions that ensures that the
infinity norm of the gradient at the starting point after projection onto the bounds is
less or equal to a given threshold value (100 in our implementation).

2.3 Benchmarks

The numerical results were obtained on a 2.4 GHz MacBook Pro with 4 GB of memory
running Mac OS X 10.7. We report our results using the performance profiles of|Dolan
and More| (2002)).

We first present a comparison of our inner solver, SBMIN, versus the bound-
constrained optimization code TRON (Lin and Moré},[1998)) on all the bound-constrained
problems from the COPS 3.0 collection (Dolan, Moré, and Munson),[2004) and from
the CUTEr collection (Gould et al.|[2003)). This results in 255 problems, all of which
were used in their default dimension. Each problem is given a limit of 3000 iterations
and 1 hour of CPU time.

By default TRON terminates the iterations as soon as

I — Po (= V()1 < 1077 |2 = Po (00 = VA () -

In order to make a fair comparison between the two solvers, we adjusted TRON’s
stopping criterion such that SBMIN and TRON stop as soon as the relative infinity
norm of the projected gradient is below 10", For both algorithms, the initial trust
region radius is set to

A% = Bl = Py (6° = V()]
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Fig. 1 Comparison between SBMIN and TRON and their BFGS versions in terms of number of iterations
and Hessian-vector products. Note that TRON-LBFGS and SBMIN-LBFGS don’t appear in the left plot
since they don’t use any Hessian vector-products.

Figure [T] shows performance profiles in terms of number of iterations and of
Hessian-vector products. The results indicate that TRON is slightly more robust than
SBMIN, and requires substantially fewer iterations and Hessian-vector products to
converge. In this regard, it appears that enforcing the bound constraints at the level of
the nonlinear problem as in TRON, instead of at the quadratic trust-region subproblem
level, as in SBMIN, pays off in terms of efficiency.

We now compare the two variants of our matrix-free augmented-Lagrangian
implementation AUGLAG, one using SBMIN as inner solver (AUGLAG-SBMIN)
and the other one using TRON (AUGLAG-TRON), to LANCELOT A (Conn et al.|
1992).

Because of the matrix-free nature of our algorithm and in order to do fair compar-
isons, partial group separability is disabled in LANCELOT, we use a box trust region,
and disable the preconditioner in the conjugate gradient method. Furthermore, the
Cauchy point calculation option was set to “approximate”. All other options are set to
their default values. Finally, for both solvers, the relative stopping tolerances, on the
infinity norm of the projected gradient and constraint violation, are set to 107", The
initial trust region radius is set to

A% = 110 = Pa((en) = Vo ((,)%52%,p) ..,

where 1’ is a least-square estimate of the Lagrange multipliers. We set £ = 1074,
& =0.9, 7, =0.25 and 9, = 2.5. In the bound-constrained quadratic program solver
BQP, { is setto 103 and when tighten, to 1075, and x = 0.1. These values have been
chosen because they seem to produce overall good performance compared to other
values we have explored.

When limited-memory quasi-Newton approximations of the Hessian are employed,
all three optimization codes are run with the same number of pairs in the history: 3
for LBFGS, and 5 for LSR1. The automatic problem scaling procedure available in
NLPy is disabled for the AUGLAG results because the other codes do not perform
any scaling of the problem.
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Fig. 2 Comparison between AUGLAG-SBMIN, AUGLAG-TRON and LANCELOT A in terms of number
of iterations with exact second derivatives (left) and with quasi-Newton approximations (right).

Finally, we compare the algorithms on all problems from the COPS 3.0 collection
(Dolan et al.l[2004) and from the CUTEr collection (Gould et al.}[2003) which possess
at least one equality constraint or at least one bound constraint. This amounts to 675
problems. Again, a CPU time limit of 1 hour and an iteration count limit of 3000 is
imposed. Figure 2] summarizes the performance of LANCELOT A and AUGLAG.
The figure only reports the number of iterations because the LANCELOT A interface
doesn’t provide the number of Hessian-vector products required. The results indicate
that AUGLAG-TRON is more robust than the two other codes when using either
exact Hessian or quasi-Newton approximations. Both versions of AUGLAG perform
slightly better than LANCELOT A when using exact derivatives. With LSR1 update,
LANCELOT A seems to perform as well as both AUGLAG-SBMIN and AUGLAG-
TRON.

3 Structural Design Optimization Application

‘We now turn to a particular area of application for our matrix-free algorithm: aircraft
structural design. Reducing the structural weight improves the fuel efficiency of
the aircraft and therefore influences both the operating cost to the airline and the
environmental impact of air transportation. Our goal is to minimize the mass of the
structure subject to failure constraints. While many structural optimization problems
are formulated with compliance (strain energy) constraints, the resulting solutions
often show stress concentrations that would result in failure if the real structure
were designed in that way. Therefore, optimization subject to failure constraints is
more practical from an engineering design perspective. We start by describing the
optimization problem formulation and how a matrix-free optimizer is helpful in this
case before discussing the structural design optimization results.
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3.1 Problem Formulation and Derivative Evaluations

Structural analysis involves the solution of static equilibrium equations in the form
of a discretized PDE so this problem may be interpreted as a special case of PDE-
constrained optimization. However, the stress constraints place further restrictions
on the optimal set of state variables, and eliminating the discretized PDEs does not
eliminate all of the constraints involving state variables. The full-space (Biros and
Ghattas|, [2005) or simultaneous analysis and design (SAND) problem (Haftka and
Kamat, [1989; [Martins and Lambel, [2013) is stated as

minimize F(x,y) subjectto C(x,y) <0, R(x,y) =0, { <x<u, (SAND)
xy

where x € RY are the design variables, y € R are the state variables, C : RY x RM —
R™ are design constraints, and R : RN x RM s RM are the discretized PDEs. Because
we often use specialized software to solve the governing PDEs, and because N is
usually much smaller than M, an alternative is to solve the reduced-space (Biros and
Ghattas|, [2005) or nested analysis and design (NAND) problem (Haftka and Kamat,
1989)

minixmize f(x) subjectto ¢(x) <0, £ <x<u, (NAND)

where y(x) is defined implicitly via R(x,y(x)) =0, f(x) := F(x,y(x)), and c(x) :=
C(x,y(x)). Despite its smaller size, even can have thousands of variables and
constraints. Furthermore, the governing equations R(x,y(x)) = 0 must be re-solved for
each new point computed by the optimizer, making function and gradient evaluation
expensive. The chain rule and the implicit function theorem yield

VC()C) = ch(x’y(x)) + ny(x)VyC(x,y(x)) (13)
= ch(xay(x)) - VxR(x>y(x))VyR(xay(x))7l Vyc(x>y(x)) (14)

where V,C(x,y(x)) denotes the transpose Jacobian of C with respect to x, i.e., the
matrix whose columns are the gradients with respect to x of the component functions
of C. We use a similar notation for the derivatives of R, and use “—1” for the inverse.
Each matrix-vector product with V¢(x) and Vc(x)T involves solving a linear system
with coefficient matrix V R(x,y(x)) and V,R(x, y(x))", respectively. Because both
operations involve the solution of a large system of linear equations, the computational
cost of a single matrix-vector product is similar to the cost of evaluating all the
objective and constraint functions. Therefore, the success of the matrix-free approach
for solving problem hinges on keeping the sum of function evaluations and
matrix-vector products small.

3.2 Approximating Jacobian Information
As mentioned in Section[2.2] exploiting the structure of the Hessian of the augmented

Lagrangian leads to better performance on a wide range of problems. In particular,
computing exact Jacobian-vector products within the trust-region solver and using
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a structured Hessian approximation to estimate the remaining terms is an effective
strategy. However, this strategy can be too expensive when applied to structural design
problems. Every time a Hessian-vector product is computed in the trust-region solver,
two products with the Jacobian (one forward and one transpose) are required. We have
observed many instances in which the number of Jacobian-vector products needed
to solve a given trust-region subproblem exceeds the number of constraints of the
problem. Under these circumstances, if sufficient memory were available, it would be
more efficient to form and store the entire Jacobian for computing these products than
to compute the products from scratch. Therefore, we need to further refine the basic
algorithm to reduce the number of expensive matrix-vector products.

We propose two different approaches for reducing the number of Jacobian-vector
products in our matrix-free algorithm. Both approaches rely on using the Jacobian-
vector products to create more accurate trust-region subproblem models using addi-
tional quasi-Newton matrix approximations. By using approximate Jacobian infor-
mation in the trust-region subproblem, we prevent the number of Jacobian-vector
products in any given iteration from becoming too large and keep the cost of solving
the subproblem low. Note that exact Jacobian-vector products are still used to com-
pute gradients of the Lagrangian and augmented Lagrangian function. Approximate
Jacobian information is only used in the trust-region subproblem.

The first approach estimates the Hessian of the quadratic penalty term of the
augmented Lagrangian function separately from the Hessian of the Lagran%ian. We
refer to this approach as the “split” quasi-Newton method. We define B o» ~ V,.Z and
B, =~ Vix% pc(x)” ¢(x). The gradient of the infeasibility function is simply p.J (x)” ¢(x)
so constructing the Hessian approximation is straightforward using a single Jacobian-
vector product. We obtained the best results using the limited-memory SR1 approxi-
mation for B o and the limited-memory BFGS for B . The choice of a combination
of quasi-Newton methods is informed by the fact that fo%pc(x)Tc(x) ~J(x)J(x),a
positive semidefinite matrix, near the optimal solution, while fof is not guaranteed
to be definite near the optimal solution. To further improve the approximation provided
by B ,, we use a starting diagonal that is an approximation of the true diagonal of
J(x)" J(x). The approximation is computed in the same way as the preconditioner
proposed by De Simone and di Serafino| (2014). Because both quasi-Newton approxi-
mations are limited-memory approximations, this approach is very memory-efficient

for large optimization problems.

The second approach estimates the Jacobian matrix directly. In other words, we
replace the true Jacobian-vector products for the algorithm outlined in Section [2.2] with
the products of the same vectors with an approximate Jacobian matrix. In general, the
Jacobian is not a square matrix, so alternative quasi-Newton approximations need to be
used. Two such approximations are the two-sided rank-one (TR1) method, proposed
by |Griewank and Walther| (2002), and the adjoint Broyden method, proposed by
Schlenkrich, Griewank, and Walther| (2010). Because the TR1 method requires more
frequent updates to the Lagrange multipliers than we have available in our algorithm,
we have selected the adjoint Broyden method for implementation. Unfortunately, no
convergence theory exists for limited-memory quasi-Newton Jacobian estimates and it
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is not obvious how to initiate a robust limited-memory approximation. Therefore, we
have chosen to implement a full-memory version of this approximation.
The basic adjoint Broyden update is given by the formula

UkaT
A1 = A+ —7— (JOxp1) —Ag) (15)
Oy Ok

where A is the approximate Jacobian and o is an “adjoint search direction.” Note that
this update requires at least one (adjoint) Jacobian-vector product. Unlike traditional
quasi-Newton methods, the choice of the search direction is not obvious. |Schlenkrich
et al.| (2010) suggest several alternatives, from which we choose option (A), given by

O = (Jip1 — Ap)sk (16)

where s; = x| — X, as the method to use with our algorithm. This particular choice
of o yields an update that is similar to the original TR1 update. Compared to the split
quasi-Newton strategy, this strategy requires an additional Jacobian-vector product to
compute o;. Despite the increase in required memory and higher cost of the update,
this method has a distinct advantage over the split quasi-Newton approach in that the
sparsity structure of any slack variables in the Hessian is preserved. That is, the block
of Vix%pc(x)Tc(x) associated with the slack variables is known exactly (an identity
matrix) so it may be treated exactly in the Hessian-vector product. This approach leads
to a much more accurate Hessian approximation than the split quasi-Newton method
if the problem contains many slack variables.

We close this section with a few implementation details of the adjoint Broyden
method. Similar to other quasi-Newton schemes, we reject the update if the denomi-
nator of the update term in @ is sufficiently small, i.e., if olo < 102, Our initial
approximation A is set to be the exact Jacobian J,. While this strategy has a very
high up-front cost, we found that it paid off on our test problem in terms of many
fewer major iterations required by the optimization. We recognize that our strategy
may not be sound for all problems, especially those in which the constraints are highly
nonlinear. However, we expect the approach to be successful on many problems given
the established robustness of quasi-Newton methods.

3.3 Optimization Results

We use the following test problem to compare our matrix-free algorithm against an
optimizer that requires the full Jacobian. The problem is to minimize the mass of a
square, metallic plate that is clamped on all sides and subject to a uniform pressure
load, as shown in Figure 3] The structural analysis of the plate is performed using
the finite-element program TACS (Kennedy and Martins| [2014) with third-order shell
elements. The optimization problem is constrained so that the maximum von Mises
stress on any of the plate elements does not exceed the material yield stress. The
design variables of the problem are the thicknesses of each plate element. Minimum
and maximum thicknesses are imposed on each element. To simplify the problem, we
analyze only one quarter of the plate and apply symmetry boundary conditions on the
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........ tinit = 5 mm

Fig. 3 Geometry and load condition of plate mass minimization problem

unclamped edges. Since each structural element is associated with one design variable
(its thickness) and one constraint (the stress), the number of structural elements, design
variables, and constraints is the same for a given problem. Except for the design
variable bounds, all constraints are nonlinear.

While this test problem does not represent a complete aircraft structure, it shares
two challenging features of such structures. First, the structure is a shell structure
subject to a distributed load. This type of structure requires higher-order two- or
three-dimensional finite elements to be used for accurate analysis of the structural
behavior. The resulting analysis is therefore much more expensive than analyses using
one-dimensional elements due to the larger number of degrees of freedom. Second,
and more importantly, the structure is not statically determinate and has many degrees
of indeterminacy. This means that the full finite-element analysis must be completed
in order to compute stresses and strains; no shortcuts can be taken in evaluating the
failure constraints. In practice, this finite-element analysis can be ill-conditioned so
the NAND problem formulation is used to hide the ill-conditioning from the
optimizer.

Our benchmark optimizer for this test is the general purpose optimizer SNOPT
(Gill et al., 2002)) which is accessed in Python through the pyOpt interface (Perez)
Jansen, and Martins, 2012). SNOPT is an active-set SQP optimizer capable of solving
nonlinear and nonconvex problems. While the full version of SNOPT has no limits
on the number of variables or constraints in the problem, it is especially suited to
problems with a large number of sparse constraints and few degrees of freedom. Like
our optimizer, SNOPT does not require second derivatives because it approximates
them using a limited-memory quasi-Newton method. Unlike our optimizer, SNOPT
requires first derivative information from the objective and all constraint functions.
Our optimizer just requires the gradient of the objective function and forward and
transpose products with the constraint Jacobian.

Due to the design of the TACS software, we are able to accommodate both
traditional optimizers like SNOPT and matrix-free optimizers. For our expression
for the Jacobian of the reduced-space problem in (T4)), TACS provides modules for
computing the action of V,R(x,y(x)) and V_R(x,y(x))" on vectors of appropriate
length. The different partial derivatives of the constraints themselves are computed
with respect to individual constraints, effectively providing column-wise evaluation



Matrix Free Augmented Lagrangian 17

of V,C(x,y(x)) and V,C(x,y(x)). The term V R(x, y(x)) " is computed implicitly by
a specialized, sparse, parallel, direct factorization method. Every time we multiply
this inverse or its transpose by a vector, we solve the appropriate upper- and lower-
triangular systems by substitution. When computing the full Jacobian for SNOPT,
TACS exploits parallel structure in the adjoint method to compute multiple adjoint
vectors at the same time. This feature is not needed by the matrix-free optimizer
since only individual matrix-vector products are ever called for. However, this added
awareness of parallel computing does tend to skew the run-time results in favour of
SNOPT.

We use the following settings in our matrix-free optimizer. The LSR1 Hessian ap-
proximation with five pairs of vectors is used to estimate the Hessian of the Lagrangian.
The adjoint Broyden approximation is used to estimate the constraint Jacobian, where
the initial Jacobian is computed exactly. In the split quasi-Newton strategy, the LBFGS
approximation with five pairs of vectors is used to estimate the feasibility Hessian.
Both magical steps and Nocedal-Yuan backtracking are turned on in the nonlinear,
bound-constrained solver. In SBMIN, a limit of 50 iterations is imposed to solve
the quadratic model problem. (On this specific problem, we found that SBMIN was
superior to TRON.) Finally, parallel computations are used in the adjoint Broyden
approximation to allow the approximate Jacobian to be stored in a distributed fashion.

For this optimization problem, we also introduced an update to the Lagrange
multipliers, modified from the update specified by Algorithm I} that we found to be
effective at improving algorithm performance. The multiplier update now takes the
form

A 2k 4 gk pke(ty a7

where 0 < a* < 1 is a chosen damping factor. Note that ak =1 corresponds to the
traditional update specified in Algorithm In this damped update, ot is computed as
the solution to the convex minimization problem

minimize IV + 765D TA S subjectto 0< o < 1. (18)
o

The solution to Problem (I8 is easily determined to be

SOl )T (VA 1A
pk(c(xk+l)TJ(xk+])](karl)TC(ka)) 1. (19

a* = median (O,

In practice, this modified update seems to improve the multiplier estimates in the first
few outer iterations. We also observe that a* is chosen close to 1 after a few updates,
suggesting that the traditional multiplier update is optimal when x and A are near a
solution.

Example design solutions to the benchmark problem are shown in Figure [4] for
three different mesh sizes, and the corresponding stress distributions are shown in
Figure 5] In these figures, the x- and y-axes of the plots correspond to the clamped
edges of the plate. The built-up regions of the plate along the clamped edges and in
the center of the plate are clearly visible. For every case in which both solvers found
an optimal solution, both SNOPT and AUGLAG converged to similar final designs.
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Fig. 4 Final thickness distributions for the 400-, 1600-, and 3600-element plate problems. These solutions
were all obtained by the matrix-free optimizer. The solutions from SNOPT for the 400- and 1600-element
problems are nearly identical.

Fig. 5 Stress distributions as a fraction of the local yield stress for the 400-, 1600-, and 3600-element plate
problems.

e—e SNOPT
=—a AUGLAG Approx
~—a AUGLAG Split QN

Total Linear
Solves

103 L
10° 10’
Number of Variables

Fig. 6 Number of finite-element linear solve operations required to solve the plate optimization problem



Matrix Free Augmented Lagrangian 19

10

e—e SNOPT
m—a AUGLAG Approx |
a—4 AUGLAG Split QN

10°F

10" f

Solve Time (s),
64 processors

10°
Number of Variables

Fig. 7 Run time to solve the plate optimization problem using 64 processors

The feasibility and optimality tolerances of both solvers were set to 107>, and both
solvers achieved these tolerances at the final designs.

Figure [6| compares the number of finite-element linear systems—those involving
VR(x,y(x))—that are solved using each algorithm for a range of problem sizes. The
finest mesh solved using either optimizer was 70 x 70 elements. The corresponding
optimization problem had 4900 thickness variables and 4900 failure constraints. We
use the number of finite-element linear system solutions as the primary metric for
comparing the optimizers because solving the linear system associated with the finite-
element method is the most costly operation in the optimization process. This operation
occurs once to evaluate the failure constraints and once for every Jacobian-vector
product. To form the entire Jacobian for SNOPT, a linear system is solved to obtain
one column of the matrix so the matrix size determines the total work. Figure [6]
demonstrates that, by not forming the Jacobian at each iteration, both matrix-free
algorithms successfully reduce the number of expensive linear solve operations as
the problem size increases. In fact, for problems with more than 1000 variables and
constraints, the reduction produced by the approximate Jacobian approach is nearly
one order of magnitude over SNOPT.

Figure [6] also shows that the matrix-free optimizer was able to solve larger op-
timization problems than SNOPT. SNOPT was unable to solve any problems for
meshes larger than 50 x 50 elements due to a lack of memory. Each instance of the
benchmark problem was solved in a distributed-memory computing environment.
Because SNOPT was not designed to exploit this environment, it could only access
the memory available to a single computing node, limiting the size of problem it could
solve. We emphasize, however, that this is an artifact of the implementation of the
SNOPT algorithm and not a fundamental limitation of the algorithm itself. There
is no reason why an active-set SQP algorithm could not be developed to exploit the
distributed-memory computing environment used to solve this problem.

Nevertheless, both matrix-free strategies lend themselves to more memory-efficient
implementations. The reason for the high memory usage of SNOPT seems to be
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the symbolic factorization of the Jacobian as part of the active-set SQP algorithm.
In the approximate Jacobian implementation of AUGLAG, we need to store the
matrix, but we do not need to factorize it. While Message Passing Interface (MPI)
standard commands are used, via the mpi4py library, to distribute the stored matrix
across multiple nodes and compute matrix-vector products in parallel, a sequential
implementation of the algorithm should be capable of solving the problem sizes shown
here, though with a longer run time. In the split quasi-Newton implementation of
AUGLAG, only limited-memory matrix approximations are used, and no special
provisions are made for parallel computing. Therefore, if the optimizer were restricted
to run on a single processor, we would expect the run time of that implementation to
be identical.

Figure [/| shows a wall-time comparison for solving the optimization problems
using 64 processors. Comparing Figures|[6|and[7] the large reduction in linear system
solve operations does not translate into reduced run time. In fact, SNOPT is still the
fastest optimizer for the problem sizes that it is able to solve. We attribute this behavior
to two causes. First, as mentioned above, the TACS solver is able to parallelize the
(implicit) multiplication of VR(x, y(x))71 by multiple right hand sides, reducing the
time needed to form a large Jacobian. In other words, TACS is able to solve multiple
adjoint systems simultaneously. This is a special feature of the TACS solver. Second,
SNOPT requires many fewer iterations than our augmented Lagrangian solver to find
the solution in each case. Fewer iterations means fewer points for which the partial
derivative matrices must be recomputed. While this cost is small in comparison to
the cost of a linear solve operation, the increase in the number of iterations seems to
outweigh the reduction in linear solves for this choice of algorithm.

One implementation decision that does not exert too much influence on the run
time is the choice of implementation language of the optimizer. Figure 8| shows the
fraction of the run time spent computing the next point in the optimizer for each case.
When using SNOPT, only a small fraction of the run time is spent in the optimizer
unless the problem is large. This increase in run time is probably due to the extra work
needed to factorize the Jacobian in the active-set SQP algorithm. For the approximate
Jacobian version of AUGLAG, the optimizer appears to take up the majority of the
run time of the optimization process. However, nearly all of this time is spent forming
matrix-vector products with the approximate Jacobian. Python makes use of both
distributed-memory parallel processing and compiled-language libraries to complete
this operation, so it is unlikely that moving to a compiled language implementation
would result in a large reduction in run time. For the split quasi-Newton version
of AUGLAG, the fraction of the run time spent in the optimizer decreases with
increasing problem size. Because so little time is spent within the optimizer itself
using this approach, replacing the Python implementation of the algorithm with a
compiled-language implementation would not result in large reductions in wall time.

These results effectively show the intrinsic trade-off of matrix-free optimization in
engineering design applications. As demonstrated in Figure[6] if the engineering design
problem has many constraints, using a matrix-free optimizer can lead to a massive
reduction in the computational effort spent calculating gradient information. However,
this reduction is offset by the overhead incurred by recomputing the design constraints
and relevant partial derivative matrices at more points in the design space. We suspect
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Fig. 8 Percentage of wall time spent in optimizer for each instance of the plate problem.

that changing the basic optimization algorithm from an augmented Lagrangian to
an SQP or interior-point method should allow the matrix-free optimizer to be more
competitive in terms of run time.

This example problem also raised the general issue of how to better exploit parallel
computing in the optimizer itself. Obviously, parallelizing the linear algebra operations
inside the optimizer and exploiting distributed storage could further reduce run time
for large problem instances. The TACS code also exploited parallel processing in
matrix multiplication to form the Jacobian. The equivalent operation in a matrix-free
optimizer would be to compute several matrix-vector products at the same time for a
given design point. The optimizer and quasi-Newton approximations would need to be
carefully chosen and structured to allow for this setup. Because the main bottleneck in
parallel processing is often communication between processors, identifying operations
within the algorithm that require lots of computation but little communication is
critical in adapting the optimizer to the parallel processing environment.

4 Conclusion and future work

This paper details the implementation of a matrix-free optimizer based on the aug-
mented Lagrangian algorithm. Benchmarking results indicate that this optimizer is
competitive with LANCELOT on standard test sets. We then extend the algorithm
to store approximate Jacobian information to reduce the required number of matrix-
vector products. The extended algorithm is then applied to a test problem motivated



22 Arreckx, Lambe, Martins, Orban

by aircraft structural design. Our results indicate that the matrix-free optimizer suc-
cessfully reduces the computational work of the structural analysis, represented by
the number of linear system solutions, when the structural design problem has a large
number of design variables and a large number of constraints. The reduction can be
as much as an order of magnitude when the number of variables and the number of
constraints are both large.

Our study also highlighted key areas for improvement in terms of the capability
of matrix-free optimizers. Namely, providing a solver for quadratic problems with
both equality and inequality constraints or equality and bound constraints is the key
to developing a matrix-free SQP or interior point method. In addition, because the
problems for which matrix-free optimizers are most useful rely heavily on parallel
computing, the matrix-free optimizer itself should exhibit strong, scalable performance
in a parallel computing environment.

In the near future, we hope to extend our encouraging results to the design of
aircraft wings, including coupled aerodynamic and structural optimization. The case of
coupled aerodynamic and structural optimization is interesting because the features of
the TACS solver that make it so fast on structural optimization problems (specialized
parallel matrix factorization and parallel solution of multiple adjoint linear systems)
would be nullified in the multidisciplinary optimization problem. In that case, we
would expect the matrix-free optimizer to become a very attractive option.
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