
Adaptive modeling strategy for constrained global
optimization with application to

aerodynamic wing design

N. Bartolia, T. Lefebvrea, S. Dubreuila, R. Olivantib, R. Priema, N. Bonsc, J.
R. R. A. Martinsc, J. Morlierd
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Abstract

Surrogate models are often used to reduce the cost of design optimization prob-

lems that involve computationally costly models, such as computational fluid

dynamics simulations. However, the number of evaluations required by sur-

rogate models usually scales poorly with the number of design variables, and

there is a need for both better constraint formulations and multimodal function

handling. To address this issue, we developed a surrogate-based gradient-free

optimization algorithm that can handle cases where the function evaluations are

expensive, the computational budget is limited, the functions are multimodal,

and the optimization problem includes nonlinear equality or inequality con-

straints. The proposed algorithm—super efficient global optimization coupled

with mixture of experts (SEGOMOE)—can tackle complex constrained design

optimization problems through the use of an enrichment strategy based on a

mixture of experts coupled with adaptive surrogate models. The performance of

this approach was evaluated for analytic constrained and unconstrained prob-

lems, as well as for a multimodal aerodynamic shape optimization problem

with 17 design variables and an equality constraint. Our results showed that

the method is efficient and that the optimum is much less dependent on the

starting point than the conventional gradient-based optimization.
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1. Introduction

In aerodynamic shape optimization, realistic wing design problems require

both a large number of design variables and constraints. A typical problem in-

volves a few tens of design variables and objective and constraint functions that

require significant CPU time. Because the computational budget is usually re-

stricted, only a limited number of objective and constraint function evaluations

(a few hundreds) can be performed to find the best design. The emergence

of adjoint methods [1, 2, 3] was a considerable breakthrough in the field of

aerodynamic shape optimization because it renders the cost of computing ob-

jective and constraint gradients independent of the number of design variables.

In conjunction with gradient-based optimizers, this provides an efficient way

to converge to a local minimum in a high-dimensional problem. Although air-

foil and wing design optimization problems are unimodal [4, 5], once the wing

planform is allowed to change, the design space becomes multimodal [6]. More

generally, in many engineering design optimization problems, we do not know a

priori whether the design space is multimodal or not and performing a multi-

start is often intractable in terms of CPU time. When the gradient information

is not available, an interesting option is to use gradient-free optimizers known

as derivative-free optimization (DFO) methods [7, 8, 9, 10]. Stochastic DFO

methods mostly fall into the category of evolutionary algorithms and are effi-

cient to solve constrained problems [11]. One of the most promising evolutionary

algorithms that can handle constraints is the covariance matrix adaptation evo-

lution strategy (CMA-ES) [12] and its variants [13, 14, 15]. They have gained

popularity in the solution of high-dimensional problems. Their only drawback is

still the large number of function evaluations required to find the optimum [16].

Deterministic DFO methods, such as mesh adaptive direct search (MADS),

coordinate search (CS), and generalized pattern search (GPS), have been pro-
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posed [10]. These methods have been implemented in different packages such

as NOMAD [17], HOPSPACK [18], and the DFL Library [19]. Deterministic

DFO methods perform local searches and therefore depend on the initial start-

ing point. For solving a multimodal problem, a multistart approach is generally

used and the number of function evaluations increases, often with more than a

thousand calls. In addition, some DFO algorithms, such as NOMAD, artificially

increase the number of inequality constraints to manage equality constraints,

making convergence even more difficult. Surrogate-based optimization (SBO)

or Bayesian optimization (BO) approaches build an inexpensive approximation

of the original function that can be used to rapidly find an approximate opti-

mum [20, 21, 22, 23]. In BO, an acquisition function is built from Gaussian

process approximations of the objective and constraint functions [24]. For some

BO frameworks [17, 25], inequality constraints are an issue. Most of the cited

algorithms consider equality constraints as two inequality constraints, which be-

comes intractable for large numbers of constraints.The augmented Lagrangian

framework ALBO [26] handles mixed-constrained problems; however, it is still

not suitable for solving large-scale problems in a reasonable time. Various re-

views on SBO can be found in the literature [27, 28, 29, 30].

Another BO alternative is based on sequential enrichment applied to effi-

cient global optimization (EGO) [21] using an adaptive surrogate model. EGO

uses a kriging model (also called Gaussian process in the machine learning com-

munity [31]) as a substitute for high-fidelity models, taking advantage of the

prediction of the variance that is built into these models to inform the adap-

tive sampling [32, 33, 34]. Wessing and Preuss [16] performed a comparison

between EGO and CMA-ES for multimodal unconstrained problems. They

concluded that EGO is effective in finding multiple optima when the budget of

function evaluations is limited. To handle constrained problems, Sasena et al.

[35] proposed an extension of EGO called SuperEGO. SBO has been applied to

aerodynamic shape optimization problems in previous research efforts [36, 37],

some of which have used adaptive sampling [38, 39, 40]. Despite the works cited

above, the number of design variables that have been handled so far is insuffi-
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cient for wing design optimization and multimodality with a restricted budget

is still an issue.

For realistic aircraft wing shape optimization problems, the required number

of design variables exceeds 200 [4], and, therefore, trying to directly solve the

problems using EGO with a conventional kriging approach is not feasible. We

recently proposed to use EGO with a new type of kriging model adapted to high-

dimensional problems (namely, KPLS and KPLS+K) [41, 42]. The resulting

optimization approach, which we call SEGOKPLS(+K), was demonstrated in

problems with up to 50 design variables that were solved using approximately

a hundred function evaluations [43]. To handle nonlinear functions that vary

significantly within a wide domain, researchers have proposed to cluster the

data and construct an assembly of local surrogates, known as mixture of experts

(MOE), which facilitate global optimization [44, 45, 46, 47, 48].

The first contribution of this study is the extension of the SEGOKPLS algo-

rithm to handle highly nonlinear and non-smooth functions by using MOE with

KPLS or KPLS+K models as the local experts. We have previously presented

an approach combining SuperEGO and MOE (SEGOMOE), with preliminary

results for analytic functions [49]. We start by constructing surrogate models for

the objective and constraint functions by combining automatic clustering and

best expert selection. Then, we approach the solution iteratively by balancing

the exploration and exploitation phases with a new proposed criterion for the

acquisition function. Analytic test cases are presented to compare SEGOMOE

with other DFO algorithms such as COBYLA, NOMAD, or ALBO.

The second contribution is the comparison of the proposed approach with a

gradient-based algorithm for an aerodynamic shape optimization problem. This

problem is based on a benchmark developed by the AIAA Aerodynamic Design

and Optimization Discussion Group (ADODG) [50]. The case that we solve is a

simplified version of ADODG Case 6, which is a subsonic wing design problem

with a multimodal objective. The aerodynamic model is expensive, requiring

high-performance parallel computing resources to solve the Reynolds-averaged

Navier–Stokes equations using computational fluid dynamics (CFD). The ob-
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jective is to minimize the drag coefficient at a given lift coefficient. The design

variables are the angle of attack, twist distribution, and dihedral distribution of

the wing, for a total of 17 design variables. Multiple optima have been identified

by using a gradient-based optimizer starting from different design points. The

goal of this study was to compare the effectiveness of SEGOMOE versus an

established gradient-based approach in converging to the global optimum.

We start the rest of this paper by summarizing the previously developed

methods that are relevant to the present work and by introducing a new en-

richment criterion (i.e., WB2S). We demonstrate the ability of the proposed

approach to find the global optima for five analytic test cases that are multi-

modal. Then, we demonstrate the effectiveness of SEGOMOE in finding the

global optimum of the aerodynamic shape optimization problem and discuss

how it compares to a gradient-based method.

2. The SEGOMOE approach

In this section, we describe the proposed approach (SEGOMOE), which

solves the constrained optimization problem min
x∈Ω

y(x)

s.t. ĉ1(x) ≤ 0, . . . , ĉm(x) ≤ 0,
(1)

where Ω ⊂ Rd defines the design space. Equality constraints can be considered

a particular case where ĉi(x) = 0.

We start this section with a description of previously developed techniques

(Section 2.1) and follow with a description of the novel contributions in the

present work (Section 2.2).

2.1. Background on SEGO

The approach proposed in this paper builds upon SEGO, which, in turn, is

based on EGO. Therefore, we start with an overview of EGO and follow with an

explanation of how constraints are handled in SEGO. We also include a descrip-

tion of a more local infill criterion (WB2). Finally, we describe the techniques
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that we use to handle high-dimensional design spaces efficiently (namely, KPLS

and KPLS+K).

2.1.1. Original EGO

As mentioned in the Introduction, the proposed algorithm was inspired by

EGO [21]. The main idea of the EGO approach is to assume that the unknown

objective function is a realization of a Gaussian process (GP) (also known as

kriging [31, 51]). This requires an initial design of experiments (DOE) of nDOE

points X =
{
x(i), i = 1, . . . , nDOE

}
with x(i) ∈ Rd, where the objective func-

tion is evaluated to obtain the samples y =
{
y(x(i)), i = 1, . . . , nDOE

}
with

y(x(i)) ∈ R. Then, we can build a conditioned GP that approximates the objec-

tive function at any point x by a Gaussian random variable Ŷ (x) with a mean

of

ŷ(x) = µ̂+ rtxXR
−1 (y − 1µ̂) (2)

and a standard deviation of

ŝ2(x) = σ̂2
(
1− rtxXR−1rxX

)
, (3)

where 1 is an nDOE×1 column vector of 1’s, rxX =
{
k(x,x(i)), i = 1, . . . , nDOE

}
,

R is the covariance matrix of components Rij = k(x(i),x(j)), and k(., .) is a

given covariance function. In this work, we use the squared exponential covari-

ance function

k(x,x′) = σ̂2
d∏

i=1

exp
(
−θi (xi − x′i)

2
)
∀θi ∈ R+,∀i ∈ [1, . . . , d]. (4)

The scalar parameters µ̂, σ̂, and θi, i = 1, . . . , d, can be found using a number

of methods; here, we use likelihood maximization [22, 31]. Using this Gaus-

sian approximation, the EGO algorithm initially proposed by Jones et al. [21]

iteratively adds points to the DOE to increase the accuracy of the GP. To find

new points xnew that help the overall optimization, the EGO algorithm uses the

expected improvement (EI) criterion,

EI(x) = E
[
max(0, ymin − Ŷ (x))

]
, (5)
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where ymin is the minimum value of the objective function over the DOE, i.e.,

ymin = min
i∈[1,...,nDOE]

y(x(i)). Because Ŷ (x) is a Gaussian random variable defined

by its mean (2) and its variance (3), the EI criterion can be written as

EI(x) =

 (ymin − ŷ(x)) Φ
(

ymin−ŷ(x)
ŝ(x)

)
+ ŝ(x)φ

(
ymin−ŷ(x)

ŝ(x)

)
, if ŝ > 0

0, if ŝ = 0
,

(6)

where φ(.) is the probability density function and Φ(.) is the cumulative distri-

bution function of the standard normal distribution. This expression highlights

the trade-off between exploitation of the Gaussian surrogate model and explo-

ration of the design space. If Φ(.) is large when ŷ(x) is small compared to ymin,

then the EI criterion promotes exploitation. On the other hand, if φ(.) is large

when ŝ(x) is large, then it promotes exploration.

Each iteration of the EGO algorithm consists of three main steps:

1. Construct a conditioned GP defined by a mean (2) and the variance (3)

based on a DOE of size nDOE.

2. Maximize the expected improvement (6).

3. Add a new point to the DOE (xnew) and evaluate it (ynew).

This iterative process is repeated from an initial DOE until convergence. The

usual stopping criterion is the maximum number of function evaluations corre-

sponding to a computational budget.

2.1.2. Handling constraints

The original EGO algorithm outlined above was designed to minimize un-

constrained functions. Because most engineering design problems are subject to

constraints, it is crucial to have a sound strategy to handle design constraints.

Although we can always add constraint functions to the objective as penal-

ties, this approach is inefficient and inaccurate. To address this issue, Sasena

et al. [52] proposed an approach they called super-efficient global optimization

(SEGO), which can solve general nonlinearly mixed constrained problems. As

in the EGO approach, the objective function y is approximated by a GP. To
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consider the m nonlinear constraints ci, i = 1, · · · ,m, we construct a surrogate

model for each constraint ci, denoted by ĉi, usually based on the same DOE as

that used for the objective function. This results in the following constrained

optimization problem:

max
x∈Ωf

EI(x), (7)

where the feasible domain Ωf is defined by the nonlinear constraints, i.e.,

Ωf := {x ∈ Rd : ĉ1(x) ≤ 0, . . . , ĉm(x) ≤ 0}, (8)

where equality constraints, ĉi(x) = 0, could replace or be added to the set of

inequality constraints above. At each iteration, the point xnew that solves this

optimization problem is added to the DOE and the process is repeated until the

convergence. Even if a point xnew is not feasible, evaluating the true functions

adds information to the DOE.

In this procedure, the iterative construction of the various surrogate models

(one for the objective function and m for the constraints) is driven only by the EI

of the objective function. Therefore, if the surrogate models of the constraints

are not accurate enough, the accuracy of the optimum is compromised.

In some examples, the optimal solution of Eq. (7) cannot satisfy the “true”

constraint functions ci(x) because only the mean value of the GP ĉi(x) is used

to approximate the constraints during the optimization process. To consider

the associated error estimation ŝ2
ci(x), we should implement different strategies.

For handling constraints in a Bayesian optimization framework considering the

error estimation, various approaches are possible: probabilistic [53], expected

violation [54], predictive entropy search with constraints [55], or slack variables

with Lagrangian formulation to handle mixed-constraint problems [26]. Work

is still in progress when it comes to addressing this challenge [56].

2.1.3. Infill criterion

The optimization problem (7) is multimodal, and it is challenging to find

the global maximum without incurring a large computational cost. To improve

the efficiency of this optimization, Sasena et al. [52] recommended to use the
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following criterion named “locating the regional extreme” proposed by Watson

and Barnes [57]:

WB2(x) = −ŷ(x) + EI(x), (9)

where the mean value of the Gaussian surrogate is subtracted from the EI. The

result is that this criterion (WB2) is less multimodal than the EI, which eases

the solution of the global optimization, as demonstrated by Sasena [58].

Nonetheless, the WB2 criterion can, in certain cases, prevent the algorithm

from finding the global minimum, yielding a local minimum instead. In fact,

the magnitude of the term EI(x) is expected to decrease during the iterative

process, as the GP surrogate model becomes more accurate in the promising

areas of the design space. Thus, after a few iterations, the WB2 criterion is

only driven by the mean value of the GP surrogate model, which makes the

algorithm focus only on the exploitation of the surrogate model rather than on

the exploration of the design space. To address these issues, we developed a

new criterion that builds on WB2, which is described in Section 2.2.1.

2.1.4. Handling a large number of design variables

One of the issues with SEGO is the scalability with the number of design

variables d. To construct the GP of the objective and the constraint functions,

we have to estimate the hyperparameters θi, i = 1, · · · , d of the covariance

function (4). The estimation of these hyperparameters by maximization of the

likelihood function can be time-consuming, especially when the number of design

variables is high (d > 10). This is because the likelihood function is multimodal,

requiring a large number of inversions of the correlation matrix to maximize it.

A recently developed surrogate technique, kriging with partial least squares

(KPLS), was proposed by Bouhlel et al. [41] to handle the large number of

variables for Gaussian processes (up to 100 variables). This technique uses the

partial least squares (PLS) method to reduce the number of hyperparameters

and the size of the estimation problem. Bouhlel et al. [42] subsequently im-

proved KPLS by adding a new step in the construction of the surrogate model,

which improves the accuracy for high-dimensional problems (KPLS+K). These
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approaches were used within the SEGO algorithm, and they were demonstrated

to be efficient for problems with up to 50 design variables [43].

In this study, we use KPLS and KPLS+K to model both the objective func-

tion and the constraints. The use of the KPLS(+K) method in the SEGO algo-

rithm is what enables us to solve nonlinearly constrained optimization problems

with a large number of design variables (d > 10).

2.2. SEGOMOE and its improvements

In this section, we describe the improvements we made to SEGOMOE that

constitute the contributions of the present study. These contributions include

a new enrichment technique that improves the overall performance of the opti-

mization, and an MOE approach that improves the accuracy of the surrogate

model over a wide range in the design space.

2.2.1. New infill criterion

As discussed in Section 2.1.3, the WB2 criterion (9) improves some of the

issues of EI; however, the lack of scaling between the EI term and the predic-

tion of the model can compromise the exploration properties of the method.

Therefore, we add the scaling

WB2S(x) = s EI(x)− ŷ(x), (10)

where s is a non-negative scale, EI is given by Eq. (9), and ŷ(x) is given by

Eq. (2).

This new criterion (WB2S) has two objectives:

1. Keep the exploration property of the expected improvement metric over

the feasible design space Ωf .

2. Keep the original properties of the WB2 metric by smoothing it to facili-

tate optimization.

The second condition is fulfilled as in the original WB2 criterion by penalizing

the expected improvement with the term −ŷ(x) in Eq. (10). The first condition
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is more difficult to satisfy and we use the following heuristic. Intuitively, this

condition can be translated to

arg max
x∈Ωf

EI(x) ≈ arg max
x∈Ωf

WB2S(x). (11)

To enforce this condition, we need to at least ensure that, for x? = arg maxx∈Ωf
EI(x),

the following inequality is verified: sEI(x?) > ŷ(x?). As a consequence, we

define s = β|ŷ(x?)|/EI(x?), where β > 1. This heuristic approach does not

guarantee that Eq. (11) is true because this depends on the variation of y(x?)

over Ωf . However, by setting a relatively large value for the parameter β, we

expect this heuristic to give an acceptable approximation.

Finally, a new approximation is performed to improve the computational ef-

ficiency of the proposed criterion. Finding x? over Ωf is a difficult task, and we

prefer to redefine x? with the following approximation: x? = arg maxx∈X0 EI(x),

where the finite subset X0 ⊂ Ωf contains the starting points used in the multi-

start optimization of the criterion. The following procedure is used to compute

s > 0:

1. Compute EI for each starting point in the optimization (in a multistart

approach).

2. Evaluate the prediction of the surrogate model for the point with the

highest EI.

3. Compute the scale s such that

s =

 β
|ŷ(xstart,EImax )|
EI(xstart,EImax ) if EI (xstart,EImax

) 6= 0

1 if EI (xstart,EImax
) = 0,

(12)

where β > 1 is a scaling factor. In our experiments, we have found that a

fixed value of β = 100 works well; however, this could be adjusted during

optimization if the EI values are too small compared to the ŷ(x) values.

Some analytic experiments will be presented in Section 3.3 to study the

sensitivity analysis of the β parameter.

To illustrate the different behaviors associated with each criterion, we pro-

vide a one-dimensional example in Figure 1. The objective function, its asso-
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ciated GP mean, and the GP uncertainty (with a confidence interval of 99%)

are plotted in Figure 1(a). In Figure 1(c), the exploration phase is less obvious

with the WB2 criterion compared to that with the EI or the WB2S criterion

in Figures 1(b) and 1(d), respectively. The maximum value of WB2 is located

close to the minimum of the kriging prediction (see Figure 1 at x ≈ 0.4), which

illustrates that, in that case, WB2 focuses more on the exploitation of the sur-

rogate model rather than on the exploration. In contrast, the EI and WB2S

criteria reach their maximum at x = 0, which allows to explore a promising area

of the design space. The two advantages of WB2S are illustrated in Figure 1(d).

Similarly to the EI criterion, the WB2S criterion facilitates exploration of the

three local maxima. On the other hand, the WB2 criterion is more unimodal,

which prevents the optimizer from getting stuck in flat areas in the interval

x ∈ [0.8, 1], where the gradient is zero.

2.2.2. Mixture of experts

One of the main contributions of this study is the combination of MOE

with EGO. The motivation for using MOE comes from industrial optimization

problems for which both the objective function and the constraints might be

strongly nonlinear, discontinuous, or both. In such cases, a good approximation

over the whole design space by a kriging model might be inaccurate or require

a large-size DOE.

To deal with the approximation of highly nonlinear functions, some re-

searchers have proposed the MOE technique [59, 60]. The key idea is to con-

struct different local approximations (experts) for different domains in the de-

sign space. These local approximations can be tailored to deal with disparate

local trends in the function, including flat regions, discontinuities, and strong

nonlinearities.

We use MOE with KPLS(+K) surrogate models as the experts and imple-

mented these methods in the surrogate modeling toolbox [61]. MOE relies on

the expectation-maximization algorithm for Gaussian mixture models [62]. The

input space is clustered together with its output value by means of a parameter
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Figure 1: Explicit infill criteria for a one-dimensional example. The objective function in

green is approximated by the kriging mean (red curve) from a four-point DOE. The confidence

interval of 99% is represented by the red area. The criterion (EI/WB2/WB2S) is given by

the blue curve.
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estimation of the joint distribution. A local expert (e.g., polynomial fit, radial

basis functions, and kriging) is then built on each cluster, and all the local ex-

perts are then combined using the Gaussian mixture model parameters found

by the expectation-maximization algorithm to obtain a global model.

In this approach, the Gaussian mixture model is used to combine the data to

both partition the input space and derive the mixing proportion. To perform the

clustering, we need n inputs, X =
{
x(i), i = 1, . . . , n

}
, and the corresponding

outputs, y =
{
y(x(i)), i = 1, . . . , n

}
. Therefore, we can only know the cluster

posterior probabilities of vectors like (x(i), y(x(i))) ∈ Rd+1. To predict the

cluster posterior probabilities of a sample knowing only its inputs, we must

project each multivariate Gaussian function k in the Gaussian mixture model

(trained in d+ 1 dimensions) onto the input space, which has d dimensions.

Thus, for each cluster k, we create a multivariate Gaussian function in d-

dimensional space with the covariance matrix,

Γk =

ΓX
k νk

νTk ξk

 , (13)

where Γk is the covariance matrix of (X,y), ΓX
k ∈ Rd is the covariance matrix

of X, νk ∈ R is Cov(X,y), and ξk ∈ R is Var(y,y). The mean vector of the

multivariate Gaussian function is

µk =

µX
k

µy
k

 , (14)

where µX
k represents the x-coordinates of the mean µk and µy

k is the y-coordinates

of the mean.

The clustering is based on the spatial location and function values (super-

vised approach between the inputs X and the output y) as in the initial version

of Bettebghor et al. [45]. If available, some other clustering criteria could be

used, such as a derivative value (supervised approach between the inputs X

and the outputs ∂y/∂x) to obtain a better indicator for the heterogeneity in

the function, as proposed by Liem et al. [60]. In our MOE toolbox, the user can

provide the full or partial Jacobian as a criterion for the MOE clustering.
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Thanks to hyperplane projection and linear recombination, the posterior

probabilities of each cluster can be predicted and local models can be performed.

When local models f̂i are known, the global model is

f̂(x) =

K∑
i=1

P(κ = i|X = x)f̂i(x), (15)

which is the classical probability expression for MOE. In the equation above,

K is the number of Gaussian components, P(κ = i|X = x) is the probability

that X lies in cluster i knowing that X = x, and f̂i is the local expert built on

cluster i. This probability is called the gating network.

2.2.3. Recombination of the infill criterion with the mixture of experts

Another key contribution of the proposed approach is the strategy used

to recombine the local experts and compute the infill criterion. In MOE, the

Gaussian mixture model is used to both partition the input space and derive

the mixing proportion.

Based on Eq. (15), the global model can be rewritten as

f̂(x) =

K∑
i=1

αif̂i(x), (16)

where K is the number of Gaussian components. This number is chosen auto-

matically to minimize the generalization error on a validation data set [49]. The

coefficients αi are given by

αi = P(κ = i|X = x) ∀i ∈ 1 . . .K for the smooth recombination

αi =


= 1 if i = arg max

k∈[1,··· ,K]
P(κ = k|X = x)

= 0 otherwise

 for the hard recombination

(17)

Their computation leads to two different approximation models: smooth recom-

bination and discontinuous recombination.

Smooth recombination considers all the cluster posterior probabilities when

choosing the Gaussian laws to compute these quantities. The output is given

by the sum of the different model outputs weighted by the cluster posterior
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probabilities. The resulting mixture of experts is also normally distributed,

assuming the local experts are independent random variables that are normally

distributed (and therefore also jointly so). The uncertainties of these models

follow the Gaussian functions. The Jacobian of the surrogate model can be

predicted if the analytic Jacobians of the local models are known, as in the case

of kriging-based models. Thus, we can perform a gradient-based optimization,

thanks to the smoothness of the surrogate model.

Discontinuous recombination—also known as hard recombination—considers

the maximum of the cluster posterior probabilities; in which case, P(κ = i|X = x)

is computed using characteristic functions for the clusters that are equal to 0 or

1. Thus, only outputs given by a local model corresponding to the cluster are

allowed. This method can be efficient for discontinuous functions. Moreover,

the mixture of experts can also predict the uncertainty: for one sample, we

choose the uncertainty corresponding to its cluster.

For both recombinations, the mixture of experts based on kriging models

approximates functions with a heterogeneous behavior, providing a global model

with a prediction of both the Jacobian and the uncertainty. The proposed

algorithm automatically chooses the best type of recombination, according to a

cross-validation procedure. The MOE can be written as the sum

K∑
i=1

αiN (ŷi, ŝ
2
i ) = N

(
K∑
i=1

αiŷi,

K∑
i=1

α2
i ŝ

2
i

)
= N

(
ŷ, ŝ2

)
, (18)

where αi is defined by Eq. (17), and ŷi(x) and ŝ2
i (x) are given by Eqs. (2)

and (3), respectively. Thus, the MOE can also predict the uncertainty. This

information is useful to define the infill criterion used in the EGO or SEGO

algorithm. The EI, WB2, and WB2S criteria defined by Eqs. (6), (9), and (10),

respectively, are adapted for the MOE models using

EIMOE(x) =

 (ymin − ŷ(x)) Φ
(

ymin−ŷ(x)
ŝ(x)

)
+ ŝ(x)φ

(
ymin−ŷ(x)

ŝ(x)

)
, if ŝ > 0

0, if ŝ = 0
,

(19)

where φ(.) is the probability density function and Φ(.) is the cumulative distri-

bution function of the standard normal distribution N (0, 1). The only difference
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between Eq. (6) and Eq. (19) is the nature of ŷ. Because MOE has multiple

models, ŷ is derived from Eq. (18) and expressed as a combination of kriging-

based local experts, i.e.,

ŷ(x) =

K∑
i=1

αiŷi(x), (20)

where ŷi(x) is given by Eq. (2). The associated variance ŝ2 is expressed in the

same way, i.e.,

ŝ2(x) =

K∑
i=1

α2
i ŝ

2
i (x), (21)

where ŝ2
i is given by Eq. (3). Because the infill criterion considers only the objec-

tive function with the knowledge of the uncertainty estimation (see Eq. (3)), we

have a wider choice for the constraint surrogate models. These could be a single

surrogate or a mixture of local experts. Analytic derivatives of the infill crite-

rion (EI, WB2, or WB2S) are also available and computed for gradient-based

optimization.

2.2.4. The SEGOMOE algorithm

Once recombination is achieved, MOE is used in combination with the SEGO

algorithm to solve global optimization problems subject to nonlinear constraints

involving a large number of design variables (d > 10) and potentially highly

nonlinear objective and constraint functions. Figure 2 shows a flowchart of the

SEGOMOE algorithm used in this study. The main steps in the algorithm are

as follows:

1. Construct the initial DOE and build the associated MOE models for the

objective and constraint functions.

2. Maximize the infill criterion (EI, WB2, or the new criterion defined in

Section 2.2.1) subject to the design constraints and variable bounds, and

propose the new enrichment point.

3. Compute the values of the objective and constraint functions at the new

enrichment point.

4. Check if the new enrichment point is in the feasible domain or not, and

identify inactive, active, and violated constraints.
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5. Return to Step 2 and update the DOE until the stopping criterion is met.

A common criterion is the maximum number of function calls correspond-

ing to the available computational budget.

To solve the constrained optimization problem (with inequality and/or equal-

ity constraints) in Step 2, we can use a gradient-based algorithm or a derivative-

free optimizer. Because we use local optimizers, we perform a multistart op-

timization with different starting points (10 points by default). The gradient-

based optimizers use the analytic Jacobian of the MOE (as described in Sec-

tion 2.2.3) to compute the gradients of both the objective function and the

constraints of the global optimization problem (7).

Regarding the number of clusters involved in the MOE, Bartoli et al. [49]

compared the efficiency of SEGOMOE with K clusters versus one cluster on the

MOPTA test case [63]. It was found that the number of function evaluations

could be decreased by automatically choosing the number of clusters K (see [49]

for more details on the proposed strategy) and that, in every test case studied,

the use of MOE in the EGO approach never increases the number of function

evaluations required for convergence. As a consequence, in the following, the

SEGOMOE framework is used with the automatic cluster number approach

already presented by Bartoli et al. [49]. The algorithm is implemented within

the NASA OpenMDAO framework [64] and, additionally, can use surrogates

available within the Surrogate Modeling Toolbox [61].

3. Analytic benchmark problems

This section presents numerical results that demonstrate the ability of SEGO-

MOE to solve multimodal analytic optimization problems. A more realistic

application is presented in Section 4. Here, five multimodal analytic opti-

mization problems (three unconstrained problems and two constrained prob-

lems) are considered. The three unconstrained problems are well known two-

dimensional benchmark analytic functions: the six-hump camel-back function,

the Michalewicz function, and the Ackley function. The first constrained prob-
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Figure 2: Overview of the SEGOMOE algorithm.
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lem is a two-dimensional analytic problem proposed by Parr et al. [65] that has

two design variables and one inequality constraint. The solution consists of one

global minimum and two local minima. The second constrained problem is a

four-dimensional analytic problem proposed by [26] that has a (known) linear

objective and two constraints: one inequality and one equality. Before dealing

with the numerical results, we review first the performance criteria based either

on the objective value at the optimal point or on the global minimum location

and the choice of the β parameter for the WB2S criterion (see Section 2.2.1).

We also introduce derivative-free optimizers to compare their performance with

that of SEGOMOE. We choose to consider COBYLA, NOMAD, and ALBO,

which are three derivative-free optimizers available as an open-source toolbox

that can handle nonlinear constraints.

3.1. Performance criteria

We use three performance criteria to compare the results for SEGOMOE

with those for the other optimization algorithms (COBYLA, NOMAD, and

ALBO).

1. Percentage of converged runs

2. Mean number of function evaluations for converged runs

3. Standard deviation of the number of function evaluations for converged

runs

The convergence is assessed by measuring the error in the objective value or the

proximity of the design variables. When the objective value is used, the relative

error is

RE =
|f∗opt − f∗ref|
|f∗ref|

, (22)

where f∗opt is the best point given by each algorithm and f∗ref is the known

reference solution given in Appendix 7. When using the proximity of the design

variables, we measure the difference between two solutions x1 and x2 using

µprox (x1,x2) = 1− 1

d

d∑
i=1

|x2i
− x1i

|
ubi − lbi

, (23)
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where ubi and lbi denote the upper bound and the lower bound, respectively,

of the ith design variable. The distances are scaled to [0, 1] to confer the same

weight on the design variables.

In the test cases presented here, one of the solutions is the reference and the

other one is the optimal point provided by the algorithm. To ensure that an

optimization is converged, we check that 1−µprox (x1,x2) ≤ ε, where ε is a given

threshold value (10−3 by default). The type of validation and the convergence

threshold are specified for each problem. It is crucial to look at this criterion

because the other two are only computed for converged runs.

3.2. Derivative-free optimizers: COBYLA, NOMAD, and ALBO

To evaluate the surrogate-based strategies, we consider the other derivative-

free algorithms (COBYLA, NOMAD, and ALBO) for the constrained and un-

constrained analytic test cases. COBYLA (Constrained Optimization BY Lin-

ear Approximation) is a trust region optimization method that uses an approxi-

mating linear interpolation model of the objective and constraint functions [66].

NOMAD is a derivative-free algorithm based on a C++ implementation of the

mesh adaptive direct search (MADS) algorithm [17], which is designed to solve

difficult blackbox optimization problems. NOMAD discretizes the design space

into a mesh that refines adaptively to find better successive solutions. According

to Audet et al. [67], NOMAD is intended for time-consuming blackbox simula-

tion with a small number of variables. Another BO algorithm, ALBO [26], is

used here to handle mixed-constrained problems. ALBO combines an uncon-

strained BO framework with the classical augmented Lagrangian (AL) frame-

work [68]. Originally designed for the equality constraint problems [69], it has

been extended to inequality constraints by means of the slack variables. The

ALBO procedure is the same as the AL framework except that the minimization

of the AL function is replaced by the maximization of an acquisition function.

The new acquisition function is not given explicitly but only through an estima-

tion method. We found that ALBO is not suitable for the solution of large-scale

problems in a reasonable time.
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We tested COBYLA and NOMAD on three well-known two-dimensional

multimodal unconstrained problems and tested ALBO on a four-dimensional

mixed-constrained problem to compare the convergence to the global minimum

and the number of function evaluations.

Both COBYLA and NOMAD require the user to specify the maximum num-

ber of function evaluations. For COBYLA, this is set to 500 evaluations, which

is much higher than the number of evaluations required to reach the convergence

in the analytic test cases we solve. For NOMAD, we try different values for the

maximum number of evaluations keeping in mind that our budget is limited to

1000 calls. If no stopping criterion is specified, NOMAD stops as soon as the

mesh size reaches a given tolerance. Because COBYLA and NOMAD require

a starting point, it may be necessary to use multistart to find the global op-

timum of these multimodal functions. To use the same set of starting points

between the two algorithms, we generate an initial set of 100 points using Latin

hypercube sampling (LHS) [70].

As explained earlier, SEGOMOE uses an LHS strategy to generate the initial

DOE to build the GP approximations of the objective and the constraints. Thus,

to compare the three infill criteria (EI, WB2, and WB2S), we use the same

set of initial LHS-generated points for each criterion with different numbers of

sampling points (5, 10, 20, and 30 points). This set of initial LHS-generated

points is also used for ALBO, which, like SEGOMOE, requires an initial sample

of points to build a GP approximation. The size of the sampling set is also a

studied parameter.

We used the Python library Scipy [71] for COBYLA, the Python NOMAD

framework [72], and DiceOptim [73] with the default settings for ALBO.

3.3. Sensitivity analysis of the WB2S infill criterion

To find the relevant values for the β parameter in the WB2S infill criterion

(defined in Section 2.2.1), we performed a sensitivity analysis study for two ana-

lytic functions (Michalewicz and Ackley) defined in Appendices 7.2 and 7.1. The

sensitivity analysis study consisted of 100 runs for 32 values of β ∈ [10−6, 109],
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resulting in a total of 3200 runs for each function. An initial DOE of 5 points

was used for the two test cases. The percentage of solutions obtained for varying

β is plotted in Figure 3.
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Figure 3: Effect of the value of β in the WB2S infill criterion. One hundred DOE points

(initial set with 5 points) were tested with a total of 3200 runs for each function.

The success rate for the Michalewicz problem was 100% for β > 1, as shown

in Figure 3(a). This was expected because s in Eq. (12) increases with β and

the WB2S criterion tends to the EI criterion when β tends to infinity, as can be

seen in Eq. (10). On the other hand, for β < 1, the WB2S criterion tends to the

surrogate-based criterion (SBO approach), which minimizes the kriging-based

surrogate model without any exploration. Therefore, small values of β lead to

poor performance in both problems.

For the Ackley function, the percentage of problems solved with WB2S ini-

tially increased with increasing β and then tended to decrease for β > 105 (see

Figure 3(b)). As a consequence, one can see that the range of β values leading

to a higher success rate is quite large β ∈ [10, 105]. Thus, even if this range

is problem dependent (especially the upper bound, as illustrated by the com-

parison of Figure 3(a) and Figure 3(b)), one might be confident in choosing an

intermediate value for β. In the following, β = 100 is retained.
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3.4. Analytic unconstrained multimodal problems

As mentioned above, the main objective of this section is to demonstrate the

performance of SEGOMOE for multimodal problems. In particular, we want to

compare the performance of the different infill criteria (EI, WB2, and WB2S).

We first consider three analytic unconstrained multimodal functions:

• The six-hump camel-back function (defined in Section 7.3) is a two-dimensional

function with six minima—two of which are global—that is smooth and

easy to optimize. The convergence is assessed based on the objective value

and a threshold of 10−3 for the associated relative error given by Eq. (22).

• The Michalewicz function (defined in Section 7.2) exhibits valleys and

ridges with a tunable steepness. The convergence is assessed based on

the objective value and a threshold of 10−3 for the associated relative

error (22).

• The Ackley function (defined in Section 7.1 for an arbitrary number of

dimensions d) is characterized by many local minima, which makes it

difficult to optimize. The value of the global minimum is independent

of the number of dimensions and is located in an area of steep gradient.

We consider the d = 2 case. The convergence is assessed based on the

proximity of the design variables with the reference solution, as the relative

error on the objective function value is not defined in that case (f(x∗) = 0).

The proximity is computed with Eq. (23) and a threshold is set to 10−3.

For SEGOMOE, as stated above, the same sets of DOE (one set per initial

size) are used for all the criteria for a fair comparison. Universal kriging models

(with squared exponential correlation functions and linear regression functions)

are used as local experts to build the surrogate model of the objective f(x). The

iteration budget is set to 300 evaluations. Each computation can be stopped

early, either because convergence has been reached or because of a singularity

arising when enrichment points are too close. The optimization of the infill
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SEGOMOE criterion is performed using the SLSQP algorithm [74] with a mul-

tistart approach. The gradients for SLSQP are computed analytically for speed

and accuracy. The convergence is assessed with a threshold of 10−3 for the rela-

tive error (see Eq. (22)) or the proximity index (see Eq. (23)), with an iteration

budget of 300 function evaluations. The results are summarized in Table 1.

In this table, higher success rates were obtained in decreasing order by WB2S

(10 times), EI (8 times), and WB2 (3 times). WB2 seems more efficient when

judged on the basis of the mean and standard deviation of the evaluations. How-

ever, it is also important to consider its rate of convergence. For the Michalewicz

and the Ackley function, a significant number of runs did not converge (between

70% and 40% for the initial DOEs with fewer than 20 points), although they

converged with the EI and the WB2S criterion. This can be explained by the

multimodality of the considered functions, as some runs performed with the

WB2 criterion ended up converging near the local minima. This issue is miti-

gated as the size of the initial DOE is increased. The use of more points improves

exploitation and reduces the likelihood of being trapped near the local optima.

The EI and the WB2S criterion performed similarly across all sizes of the DOE

in terms of both rate of convergence and mean number of evaluations. The

standard deviation of the WB2S was slightly better for DOE sizes ranging from

10 to 30. This behavior was expected, as explained in Section 2.2.1.

The comparison results between COBYLA and NOMAD are listed in Ta-

ble 2. For COBYLA, the convergence to the global minima was obtained with

a significantly lower success rate compared to that for SEGOMOE. However,

when COBYLA converges, it requires roughly the same number of function

evaluations (between 51 and 60) as that of SEGOMOE. Table 2 shows also the

NOMAD results for the three performance criteria as a function of the stopping

criterion chosen (MAX_BB_EVAL for a maximum number of blackbox evaluations

of 100, 300, and no limit). Thus, the number of evaluations with NOMAD was

much higher than that with the SEGOMOE approach with a similar success

rate.

The efficiency of SEGOMOE was validated for three multimodal uncon-
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Criterion Results DOE 5 DOE 10 DOE 20 DOE 30
S
ix

-h
u
m

p
ca

m
el

-b
a
ck

fu
n
ct

io
n

WB2 Converged 94% 100% 100% 100%

Mean (evaluations) 23 29 40 43

σ (evaluations) 6 7 7 4

EI Converged 100% 100% 100% 100%

Mean (evaluations) 39 40 42 44

σ (evaluations) 4 4 4 3

WB2S Converged 100% 99% 100% 100%

Mean (evaluations) 39 39 42 44

σ (evaluations) 3 3 4 3

M
ic

h
a
le

w
ic

z
fu

n
ct

io
n

WB2 Converged 71% 76% 83% 87%

mean (evaluations) 25 31 36 46

σ (evaluations) 14 24 15 13

EI Converged 100% 100% 100% 100%

mean (evaluations) 47 45 51 59

σ (evaluations) 36 43 31 21

WB2S Converged 100% 99% 100% 100%

mean (evaluations) 48 46 51 55

σ (evaluations) 36 33 27 15

A
ck

le
y

fu
n
ct

io
n

WB2 Converged 32% 58% 90% 91%

mean (evaluations) 41 55 45 50

σ (evaluations) 30 38 27 17

EI Converged 71% 98% 98% 98%

mean (evaluations) 95 73 56 80

σ (evaluations) 96 68 30 56

WB2S Converged 97% 100% 100% 100%

mean (evaluations) 107 60 58 68

σ (evaluations) 90 45 26 23

Table 1: SEGOMOE results for 3600 runs (100 per combination of DOE size, criterion,

and function) for the six-hump camel-back, Michalewicz, and Ackley problems, showing the

percentage of runs that converged to the analytic solution (with a relative error threshold or

a proximity index of 10−3). The best results are shown in bold.
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Algorithm COBYLA NOMAD

MAX_BB_EVAL 500 100 300 without
S

ix
-h

u
m

p

ca
m

el
-b

a
ck Converged 77% 93% 95% 95%

Mean (evaluations) 51 100 294 308

σ (evaluations) 5 0 10 25

M
ic

h
a
le

w
ic

z

Converged 29% 87% 89% 89%

Mean (evaluations) 60 100 290 300

σ (evaluations) 27 0 13 26

A
ck

le
y

Converged 38% 98% 100% 100%

Mean (evaluations) 59 100 300 499

σ (evaluations) 5 0 0 12

Table 2: Six-hump, Michalewicz, and Ackley results using COBYLA or NOMAD (100 runs).

Different stopping criteria relative to the maximum number of blackbox evaluations were

tested. The best results are shown in bold.

strained problems compared to the two other derivative-free algorithms (COBYLA

and NOMAD). In terms of criteria, EI and WB2S yielded similar results in two

problems, whereas WB2S performed better in the third one.

3.5. Analytic constrained multimodal problems

To evaluate the ability of SEGOMOE to tackle multimodal and constrained

problems, we used the following two test cases:

• The modified Branin problem, which is a two-dimensional nonlinear prob-

lem with a single nonlinear constraint [65]. This modification, which was

proposed by Parr et al. [65], adapts the original Branin function to have

a single global optimum and two local ones, rather than three optima of

equal value. 
min

x∈[−5,10]×[0,15]
f(x)

g(x) ≥ 0
, (24)

where f(x) and g(x) are as detailed in Appendix 7.4. The feasible space
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for this problem consists of isolated feasible regions within their design

space, which often occurs for severely constrained practical cases. The

problem features three distinct feasible regions delimited by green curves

in Figure 4, making it an excellent test for constraint strategies [25, 65].

• The Linear-Ackley-Hartman (LAH) mixed-constrained problem with four

input dimensions, a linear objective, and two constraints like the one de-

scribed by Picheny et al. [26]
min

x∈[0,1]4
f(x)

g(x) ≤ 0

h(x) = 0

(25)

The first inequality constraint is the Ackley function in four dimensions,

and the second one is an equality constraint following the Hartman four-

dimensional function. The problem is denoted by LAH in the following,

and details on the function expressions and the reference solution are given

in Appendix 7.5.

For these two constrained test cases, we compared SEGOMOE, COBYLA,

and NOMAD with the ALBO framework. As the LAH problem is a mixed-

constrained problem, the equality constraint h(x) in Eq.(25) has been trans-

formed into two inequality constraints for COBYLA and NOMAD. SEGOMOE

and ALBO are both able to consider mixed-constraint problems.

In our tests, we sought to quantify the impact of the size of the initial DOE

and the choice of infill criterion for SEGOMOE. As for the unconstrained case,

the results were obtained by considering universal kriging models (with squared

exponential correlation functions and linear regression functions) as local experts

to build the surrogate models of both the objective f(x) and the constraints g(x)

and h(x). The iteration budget was still set to 300 evaluations. Optimization

under constraints of the infill SEGOMOE criterion was still performed using

the SLSQP algorithm [74] with a multistart approach. Because the initial DOE

was computed using an enhanced stochastic evolutionary (ESE) algorithm [70]
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for building the LHS, we ran the same case 100 times to obtain statistically

significant results. Furthermore, to reduce the bias that could exist between the

results obtained with different infill criteria should different batches of initial

DOEs be used, we kept the same initial batches for the criteria (size-wise) by

means of a hot start feature implemented in SEGOMOE. The same DOEs were

used to initialize the ALBO framework.

To compare the performances of the different algorithms (SEGOMOE, ALBO,

COBYLA, and NOMAD), we used the criteria defined in Section 3.1. For the

modified Branin problem, the convergence was assessed for each feasible point

found using the relative error of the objective with respect to the known solution

(see Eq. (22)), and a convergence threshold of 10−3. A point is only a priori

feasible when the relative violation of the constraint is less than 10−4. For the

LAH problem, a convergence threshold of 10−3 (see Eq. (23)) on the proximity

index was used. The results of the optimizations are summarized in Table 3.

From Table 3, we can see that the convergence success rate increases with the

size of the initial DOE for all the criteria considered, reaching nearly 100% for

SEGOMOE with WB2 or WB2S when more than 20 points were used. When

comparing the three criteria we used, we found that WB2S was significantly

better than the other two for sparse initial DOEs (sizes of 5 and 10), for which

it had a 69% success rate for modified Branin and 10 % for the LAH function.

This can be attributed to the fact that, in WB2S, the scaling eases exploration.

For all criteria, the mean of the SEGOMOE cost increased with the size of

the initial DOE; however, it is important to note that the variance decreased.

The lower success rates for the sparser initial DOEs can be explained by the

inaccuracy of the surrogate of the constraint, which prevented the enrichment

optimizer from searching the promising areas.

If the WB2 and WB2S criteria both gave a convergence success rate close to

100% for all the DOE sizes (10, 20, and 30) with a similar number of function

evaluations (mean and variance) for the LAH function, the EI criterion was less

efficient on this example. Concerning the other BO algorithm, ALBO converged

with a success rate of less than 45% with a large number of function evaluations
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Criterion Results DOE 5 DOE 10 DOE 20 DOE 30
M

o
d
ifi

ed
B

ra
n
in

fu
n
ct

io
n

WB2 Converged 62% 78% 93% 99%

Mean (evaluations) 38 39 53 51

σ (evaluations) 28 22 20 9

EI Converged 50% 75% 96% 100%

Mean (evaluations) 27 45 49 45

σ (evaluations) 22 29 21 8

WB2S Converged 69% 76% 90% 100%

Mean (evaluations) 34 39 49 47

σ (evaluations) 20 17 19 9

ALBO Converged 41% 32% 35% 19%

Mean (evaluations) 58 57 70 70

σ (evaluations) 15 13 8 7

L
A

H
fu

n
ct

io
n

WB2 Converged 100% 100% 100% 100%

Mean (evaluations) 17 19 28 37

σ (evaluations) 4 3 3 3

EI Converged 96% 86% 80% 68%

Mean (evaluations) 45 33 43 43

σ (evaluations) 31 15 15 11

WB2S Converged 100% 100% 100% 100%

Mean (evaluations) 18 20 29 37

σ (evaluations) 3 2 3 3

ALBO Converged 5% 8% 13% 27%

Mean (evaluations) 29 50 65 84

σ (evaluations) 11 7 8 8

Table 3: Results for 3200 runs (100 per combination of DOE size and criterion) of the modified

Branin and the LAH problems. DOEs range from 5 to 30 points, and the number of function

evaluations to reach the minimum value is reported both for SEGOMOE depending on the

infill criterion used (EI, WB2, or WB2S) and for ALBO. The number of converged runs to

the analytic solution (with a relative error threshold or a proximity index of 10−3) is given in

percent. The best results are shown in bold.
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(greater than 50). The ALBO results on the LAH function are quite different

from those presented by Picheny et al. [26]; this could be explained by the

difference in the relative violation of the constraint, i.e., 10−4 instead of 10−2.

To visualize the enrichment process in two dimension, Figure 4 shows the

modified Branin function, where the three feasible regions are shown in green.

The global optimum of the modified Branin case is at the border of the feasible

region at the bottom right-hand corner of the contour plots. When the WB2S

or WB2 infill criterion was used, the solution successfully converged to the

global minimum. However, when the conventional EI criterion was used, the

solution remained trapped in the feasible region discovered by the initial DOE.

This shows that the numerical improvement of WB2S relative to EI eases the

enrichment optimization, allowing a better exploration. Moreover, the increased

contribution of EI within WB2S, compared to WB2, enabled the optimizer to

identify the second feasible region and, therefore, to converge for this particular

configuration.

As for the unconstrained test cases, comparisons were performed with the

DFO algorithms (COBYLA and NOMAD), as reported in Table 4, where 100

runs (corresponding to 100 different starting points from an LHS) were per-

formed and the same threshold criterion of 10−3 for the relative error or the

proximity index was used. For the modified Branin problem, the convergence

success rate was very low for COBYLA (12%). For NOMAD, the constraint

was treated with the Progressive Barrier option [75], which needs to be satisfied

only at the solution and not necessarily at the intermediate points (relaxable

constraint). The convergence success rate was very low (less than 27%), and

the number of function evaluations was still significant (more than 300). These

values were compared with fewer than 51 evaluations for the SEGOMOE results

(see Table 3). For the LAH problem, COBYLA with 53% convergence success

rate had a number of function evaluations quite comparable to the SEGOMOE-

EI results. For NOMAD, the equality constraint was treated as two inequality

constraints with the Progressive Barrier option [75]. The convergence success

rate was 0% for the 10−3 threshold and was very low (2%) if we increased the
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(a) Solution (b) WB2

(c) EI (d) WB2S

Figure 4: Contour plots of the modified Branin function showing an example of criterion

sensitivity for an initial DOE of 10 points. The color of the enrichment points (blue) fades

according to how old they are in the optimization history. The feasible areas are inside the

three green circles, and the optimal exact solution is shown by the red square in (a). The

enrichment process with WB2, EI, and WB2S is given in (b), (c), and (d), respectively. EI is

trapped in a local optimal point, whereas WB2 and WB2S find the global optimum.
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Algorithms COBYLA NOMAD

MAX_BB_EVAL 500 100 300 Without
M

o
d

ifi
ed

B
ra

n
in

Converged 12% 20% 27% 27%

Mean (evaluations) 60 100 300 641

σ (evaluations) 6 0 0 123

L
A

H

Converged 53% 0% 0% -

Mean (evaluations) 42 - - -

σ (evaluations) 11 - - -

Table 4: Modified Branin and LAH problems with COBYLA or NOMAD (100 runs). Different

stopping criteria relative to the maximum number of evaluations were tested. The best results

are shown in bold.

threshold value to 10−1 (requiring 500 function evaluations in this case). In this

LAH test case, a maximum number of function evaluations MAX_BB_EVAL is re-

quired to obtain a reasonable a CPU time. The obtained values were compared

with fewer than 43 evaluations for the SEGOMOE results (see Table 3). To

sum up on these two constrained test cases, SEGOMOE with the EI, WB2, or

WB2S criterion was still more efficient than ALBO, NOMAD, or COBYLA in

terms of both convergence success rate and number of function evaluations.

In the five analytic multimodal optimization problems considered in this

section, EI and WB2S had a similar behavior in some cases, which justifies the

use of a scalar multiplier s > 1 in the WB2S formula to promote the exploration

phase. In other cases, WB2S gave better results than those of EI; especially

when the size of the initial DOE was small, its convergence success rate was

close to 100%. When EI found a global optimum, WB2S managed to find it

also, although the reciprocity was not always satisfied.

4. Application to wing aerodynamic shape optimization

In the previous sections, we demonstrated the performance of SEGOMOE

for analytic cases. We now demonstrate it on a design optimization problem that
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is more representative of a real-world problem: a nonlinearly constrained wing

aerodynamic shape optimization problem where the objective function is multi-

modal. We compare SEGOMOE with a gradient-based optimizer (SNOPT) that

requires a multistart approach to reach the global optimum. These comparisons

are based on the performance criteria described in Section 3.1.

The final problem is a simplified version of an aerodynamic shape optimiza-

tion problem defined by the ADODG, which has one equality constraint and

exhibits multimodality.

4.1. High-fidelity aerodynamic shape optimization framework

To perform the aerodynamic shape optimization, we use a framework that

combines a Reynolds-averaged Navier–Stokes (RANS) CFD solver, a geometry

parametrization engine, and a mesh perturbation algorithm. The CFD solver

is ADflow, which uses a second-order finite-volume scheme to solve the com-

pressible Euler equations, laminar Navier–Stokes, and RANS equations (steady,

unsteady, and time periodic) on overset meshes [76, 77]. The Spalart–Allmaras

turbulence model [78] is used to complete the RANS equations. The solver com-

bines a Runge–Kutta method for the initial iterations with a Newton–Krylov

algorithm that increases the convergence success rate in the later iterations.

ADflow is especially effective when used in conjunction with gradient-based

optimization because it efficiently computes accurate gradients with respect

to large numbers of design variables using an adjoint method. The adjoint

method is implemented using a hybrid approach that selectively uses automatic

differentiation to generate the code that computes the partial derivatives in the

adjoint equations [77]. The geometry is parametrized using an implementation

of free-form deformation (FFD) [79], and the mesh deformation is performed

with an efficient analytic inverse distance method [80].

The integration of ADflow into the optimization algorithms is achieved

through pyOpt, a common Python interface that facilitates the use of different

optimization algorithms [81, 82]. The gradient-based optimizer that we use here

is SNOPT [83], a sequential quadratic programming optimizer that can handle
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large-scale nonlinear constrained problems. This aerodynamic shape optimiza-

tion framework has been used to solve various problems [4, 84, 85, 86, 87] and has

also been extended to perform aerostructural design optimization [3, 88, 89, 90].

For this specific study, SEGOMOE was integrated into pyOpt, enabling us to

reuse the same Python scripts when benchmarking SEGOMOE against SNOPT.

4.2. Problem definition

The problem is a simplification of the ADODG Case 6 benchmark (“Mul-

timodal Subsonic Inviscid Optimization”) [6, 50], where we reduce the number

of variables. This case was devised to explore the existence of multiple local

minima in aerodynamic wing design. The baseline geometry is a rectangular

wing with a chord of 1.0 m and a NACA 0012 airfoil cross section with a sharp

trailing edge. The semi-span is 3.06 m and the wing is fitted with a rounded

wingtip cap. In the full benchmark problem, the optimizer is given freedom to

change the twist, chord, dihedral, sweep, span, and sectional shape variables.

In the modified version used for this study, we reduced the variables to twist

and dihedral, for a total of 17 design variables. The geometry is parameterized

using the FFD approach implemented in pyGeo [79], which allows the definition

of global design variables with control of the sections of the B-spline control

points. Nine sections are defined along the span of the wing with heavier clus-

tering toward the wing tip. The twist variables rotate eight of these sections

(excluding the root section) about the quarter-chord. Likewise, each of the eight

dihedral variables controls the vertical displacement of one of the spanwise sec-

tions, excluding the root section. The angle of attack can be varied to allow

the optimizer to satisfy the lift constraint. The objective of the problem is to

perform a lift-constrained drag minimization of a simple wing under subsonic

flow (M∞ = 0.5), using the Euler equations. The main characteristics of the

optimization problem are summarized in Table 5.

4.3. Gradient-based optimization results

The SEGOMOE approach is compared to SNOPT on the same test case.

These gradient-based results, as well as those of other cases related to ADODG
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Function/variable Description Quantity Range

Minimize CD Drag coefficient 1

with respect to α Angle of attack 1 [−3.0, 6.0] (◦)

θ Twist 8 [−3.12, 3.12] (◦)

δ Dihedral 8 [−0.25, 0.25] (δ/c)

Total variables 17

subject to CL = 0.2625 Lift coefficient 1

Total constraints 1

Table 5: Definition of the simplified ADODG Case 6 optimization problem.

Case 6, are presented in more detail by Bons et al. [6]. Here, we just compare

the SEGOMOE results for the Euler-based twist and dihedral optimization case,

and summarize the corresponding results for completeness. The optimization

problem is solved using SNOPT [83] starting from the 15 random shapes shown

in Figure 5(a), where we use a coarse mesh grid (L3 mesh with 180K cells).

The average number of iterations required to converge is approximately 100.

Nevertheless, in addition to the standard evaluation, ADflow also needs to com-

pute the gradients for each aerodynamic-related function (drag and lift), each of

which requires an adjoint solution. Therefore, for this problem, the mean eval-

uation budget is equivalent to approximately 300 standard ADflow calls. The

optimal shapes are shown in Figure 5(b), and the optimal results are summa-

rized in Table 6. This problem has multiple local optima and a single global one,

although the designs are very close in terms of drag value: 39.9091 drag counts

for the global optimum and around 40.1980 drag counts for the local ones. Of

the 15 runs, 5 converged toward the global optimum, which is characterized by

an upward winglet. For the other 10 runs, multiple local minima were found for

shapes with a downward winglet.

The radar chart in Figure 6 shows the values of the 17 design variables for

the various optima. We can see that all local minima differ only slightly on the

twist parameters and on the dihedral parameters in the inner part of the wing.

The multimodality of this problem, together with the complexity of the equality
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CD × 104 (drag counts) Number of runs Mean constraint violation

39.9091 5 7 × 10−10

40.1971 3 1 × 10−9

40.1972 3 1 × 10−8

40.1975 2 6 × 10−10

40.1986 1 8 × 10−10

40.1995 1 5 × 10−10

Table 6: Results obtained with SNOPT and ADflow using the adjoint method. The global

optimum is written in bold.

(a) Initial configurations (b) Optimal shapes

Figure 5: SNOPT results for wing optimization with respect to the twist and dihedral vari-

ables. Multiple local minima were found when starting from 15 randomly generated initial

configurations.
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constraint, makes this a challenging proving ground for SEGOMOE.

alpha_fc_0
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twist_1

twist_2

twist_3
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twist_6

twist_7 dihedral_0

dihedral_1

dihedral_2

dihedral_3

dihedral_4

dihedral_5

dihedral_6

dihedral_7

Global optimumLocal optima
Global optimum

Figure 6: Radar plot of the optima found by gradient-based optimization: SNOPT global

minimum (green) and SNOPT local minima (red).

4.4. SEGOMOE results

We performed a series of studies similar to those performed for the analytic

functions in Sections 3.4 and 3.5. The runs were performed using a fixed eval-

uation budget of 500 evaluations, including the initial DOE and iterations. Six

initial DOE sizes were considered, ranging from 1 × d = 17 to 6 × d = 102.

Given the dimension of the problem, KPLS+K surrogates were selected as local

experts of the MOE because we have found in previous studies that they offer

the best trade-off between efficiency and accuracy [42]. The tolerance on the

CL was set to 10−5, and the enrichment step was performed using the SLSQP

optimizer [74] with 50 randomly picked starting points at each step.

Both the WB2 and the WB2S criterion were tested using the same batches of

initial DOEs (18 DOEs per batch, computed using an optimized LHS algorithm)

for each size of initial DOE, leading to a total of 216 runs. As previously
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mentioned, this allows us to study the sensitivity with respect to the initial

sampling without introducing bias into the results.

The best point obtained for each run is shown in a radar plot that com-

pares the results for different initial DOE sizes and the infill criteria. Only the

four most significant plots (out of 12) are shown in Figures 7 and 8, where we

compare the WB2 and WB2S criteria. The optima found by the gradient-based

optimizer (SNOPT) in Section 4.3 are also shown for comparison, where the

global optimum is shown in green and the five local optima are shown in red.

Because not all runs converge exactly to one of the optimum of the problem

within the given evaluation budget, we use the proximity index to quantify the

difference between two solutions x1 and x2 defined by Eq. (23). The proximity

indices of the local minima computed with the global optimum as reference

(µprox-glob) are listed in Table 7. When the point is the global optimum, then

µprox = 1.

CD (drag counts) 39.9091 40.1971 40.1972 40.1975 40.1986 40.1995

µprox-glob 1 0.458 0.449 0.441 0.494 0.505

Table 7: Proximity indices between the local optima and the global one (CD = 39.9091 drag

counts) computed with Eq. (23). The best value in bold was obtained for the global optimum.

Because two distinct optimal regions exist, proximity indices can be used

to assess whether a point belongs more to the “local region” or to the “global

one,” by comparing its proximity to the global and local optima.

The cost of the optimization is evaluated using the mean, maximum, and

minimum number of evaluations corresponding to the best points found. Owing

to the relatively small number of runs performed, the minimum and maximum

are deemed more relevant than the standard deviation when analyzing the sen-

sitivity to the initial DOE. The accuracy is assessed by computing the mean

proximity index of the best points of a batch with the known global optimum

(µprox-glob), and the feasibility is assessed by computing the mean constraint

violation. All the results are compiled in Table 8.

Both the radar plots and the statistics in Table 8 show that the WB2S
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(a) WB2
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(b) WB2S

Figure 7: Best points obtained with SEGOMOE (blue) for the initial DOEs of 17 points, as

well as for the SNOPT global minimum (green) and SNOPT local minima (red).
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Figure 8: Best points obtained with SEGOMOE (blue) for the initial DOEs of 68 points, as

well as for the SNOPT global minimum (green) and SNOPT local minima (red).
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Criterion Results DOE 17 DOE 34 DOE 51 DOE 68 DOE 85 DOE 102

= d = 2d = 3d = 4d = 5d = 6d

WB2 Global 61.1% 77.8% 77.8% 88.9% 83.3% 77.8%

µprox-glob 0.714 0.785 0.801 0.892 0.844 0.801

Mean evaluations. 382 426 414 409 428 368

Maximum evaluations 500 500 500 497 498 489

Minimum evaluations 225 273 189 270 254 248

Mean violation 3.9 × 10−6 4.0 × 10−6 3.2 × 10−6 2.97 × 10−6 2.64 × 10−6 3.22 × 10−6

WB2S Global 88.9% 94.5% 100% 100% 100% 100%

µprox-glob 0.808 0.856 0.888 0.954 0.934 0.949

Mean evaluations 399 458 468 477 478 468

Maximum evaluations 497 500 500 500 498 500

Minimum evaluations 256 312 335 406 370 408

Mean violation 3.5 × 10−6 3.5 × 10−6 4.5 × 10−6 3.24 × 10−6 2.52 × 10−6 2.76 × 10−6

Table 8: SEGOMOE statistics for the simplified ADODG Case 6 optimization problem for

different infill criteria (WB2 and WB2S) and initial DOE sizes. The best results in terms of

proximity index or mean evaluations are shown in bold.

42



criterion is more robust than the WB2 criterion in finding the “global region” for

all sizes of the initial DOE within the specified budget. For instance, Figures 7

and 8 compare the behavior of both criteria for 1×d and 4×d DOE points. We

can see that, for 1× d, only WB2S managed to find the global optimum shape

(higher proximity index). For 4 × d, all WB2S optimizations converged to the

global optimum area, which was not the case with WB2. We can see this by

looking at the success rate in finding the global optimum (“Global” in Table 8)

and the closely related µprox-glob index defined by Eq. (23).

The robustness of WB2S comes at an additional cost of 40 to 120 iterations

compared to WB2 in terms of mean evaluations. The sensitivity to the initial

DOE can be noticed by looking at the sharp differences between the maximum

and the minimum number of evaluations for the WB2S criterion (≈ 200–250).

It is nonetheless important to keep in mind that these results are linked to the

evaluation budget as the SEGOMOE approach performs exploration without

using a stopping criterion other than the budget. For instance, several runs

yield their best point on the last iteration, which might be noticeably improved

with few additional iterations.

The mean evaluation budget, irrespective of the infill criterion selected, is

around 50% higher than that required for one gradient-based optimization with

SNOPT and the adjoint method. Likewise and logically, the mean constraint

violation obtained with SEGOMOE was also higher than what was achieved

by the gradient-based optimization using SNOPT, although it is totally in line

with the chosen feasibility tolerance (10−5).

The gradient-based optimization only converged a third of a time to the

global optimum. Although SEGOMOE rarely exactly converges toward an op-

timum within the budget, it reliably identifies the neighborhood of the global

optimum (189 out of 216 times) with acceptable statistical accuracy. This is

especially true when we used the WB2S criterion (105 out of 108 times, or 97%).

Table 8 shows that the best size of the initial DOE is 4 × d, both in terms of

finding the global optimum and in terms of accuracy.
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5. Conclusions

We presented a new constrained global optimization methodology, namely,

super-efficient global optimization coupled with mixture of experts (SEGO-

MOE), that can handle nonlinearly constrained multimodal problems at a rea-

sonable computational cost, even when the function evaluations are costly. We

built on previous algorithms by developing and implementing a new infill crite-

rion (WB2S) and by implementing an MOE with a new recombination strategy.

The use of MOE based on kriging models allows us to have a global surrogate

model that approximates heterogeneous functions for the objective and the con-

straints.

The proposed approach can handle complex design optimization problems

through the use of an adaptive surrogate modeling approach based on kriging

surrogate models. The ability of SEGOMOE to tackle multimodal optimization

problems (both constrained and unconstrained) was evaluated using five ana-

lytic benchmark problems. For the first three problems, we compared SEGO-

MOE with two other derivative-free algorithms (NOMAD and COBYLA). The

number of function evaluations was drastically reduced with the proposed ap-

proach, and the convergence success rate was higher: 99% for WB2S, compared

to 89% for NOMAD and 29% for COBYLA in the worst cases. In the best cases,

WB2S achieved 100%, compared to 100% for NOMAD and 77% for COBYLA.

The fourth analytic problem (a modified Branin function) enabled us to ob-

tain statistically significant results for different infill criteria and different initial

DOE sizes for SEGOMOE. The results show the overall efficiency of the SEGO-

MOE algorithm and demonstrate the advantages of WB2S, which performs a

better design space exploration, especially for sparse initial DOEs. On this

constrained multimodal analytic problem, COBYLA and NOMAD had a small

convergence success rate (12% and 27%, respectively) with a significant number

of function evaluations. For the mixed-constrained problem considered in four

dimensions, NOMAD had a poor convergence success rate (2% to be closed to

the reference solution). The ALBO algorithm was compared to the different

44



variants of SEGOMOE in this fifth analytic example and managed to converge

to the reference solution with a 27% success rate and a high number of function

evaluations (84 calls compared to 37 with SEGOMOE).

We also presented the results for an aerodynamic shape constrained opti-

mization problem based on the ADODG Case 6 benchmark, which exhibits

multimodality. An exhaustive study of the infill criteria with various DOE sizes

was conducted, and SEGOMOE converged to the vicinity of the global minima

area under a fixed computational budget. Among the criteria, WB2S appeared

more robust than WB2 for all DOE sizes, confirming its advantages. Compared

to a gradient-based optimizer (SNOPT) that takes advantage of adjoint gra-

dients, and assuming a DOE size of 4 × d, SEGOMOE always identified the

global minimum for an average budget that is only 50% higher than that of

the gradient-based one. The gradient-based approach, on the other hand, only

reached the global optimum 33% of the time.
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We are also grateful to Rémi Lafage for his support with the SEGOMOE frame-

work and the ADflow installation at ONERA, Régine Leconte for her support

on the ISAE Cluster, and Youssef Diouane for his suggestions. This work was

supported by the AGILE project (Aircraft 3rd Generation MDO for Innovative

Collaboration of Heterogeneous Teams of Experts), as well as by the European

Union Horizon 2020 Program (H2020-MG-2014-2015) under grant agreement

number 636202. Additional support was provided by the Air Force Office of

Scientific Research (AFOSR) MURI on “Managing multiple information sources

of multi-physics systems,” program officer Jean–Luc Cambier, award number

FA9550-15-1-0038. Joseph Morlier acknowledges the ISAE–SUPAERO founda-

tion, which supported his visiting scholar position at the University of Michigan.

45



This work was also partially supported by the EU project 658570—NextGen

Airliners—funded by Marie Sk lodowska–Curie Actions (MSCA).

7. Appendix

7.1. Ackley function

Objective

f(x) = −a exp

−b
√√√√1

d

d∑
i=1

xi2

− exp

(
1

d

d∑
i=1

cos (cxi)

)
+ a+ exp(1)

Parameters (usual)

a = 20 b = 0.2 c = 2π

Search domain

xi ∈ [−32.768, 32.768] ∀i ∈ [1, ..., d]

Global minimum

f(x∗) = 0 x∗ = [0, ..., 0]

7.2. Michalewicz function

Objective

f(x) = −
d∑

i=1

sin (xi) sin2m

(
ixi

2

π

)
Search domain

xi ∈ [0, π] ∀i ∈ [1, ..., d]

Global minimum according to the dimension d

d = 2 f(x∗) = −1.8013 x∗ = [2.20, 1.57]

d = 5 f(x∗) = −4.687658

d = 10 f(x∗) = −9.66015
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7.3. Six-Hump Camel-Back function

Objective

f(x) =

(
4− 2.1x1

2 +
x1

4

3

)
x1

2 + x1x2 +
(
−4 + 4x2

2
)
x2

2

Search domain

x1 ∈ [−3, 3] x2 ∈ [−2, 2]

Global mimina

f(x∗) = −1.0316 x∗ = [0.0898,−0.7126] and x∗ = [−0.0898, 0.7126]

7.4. Modified Branin problem

The modified Branin function [65] is a version of the Branin function nor-

malized to [0, 1] [22]. The constraint function is a normalized version of the

Gomez#3 function [47], with an additional sine wave to increase multimodality:

Objective

f(x1, x2) =

(
x2 −

5.1

4π2
x1

2 +
5

π
x1 − 6

)2

+10

[(
1− 1

8π

)
cos(x1) + 1

]
+

5x1 + 25

15

Constraint

g(x1, x2) =
(

4− 2.1y2 + y4

3

)
y2 + yz + 4

(
y2 − 1

)
z2 + 3 sin [6(1− y)] + 3 sin [6(1− z)]− 6

where y = x1−2.5
7.5 , z = x2−7.5

7.5

g(x1, x2) ≥ 0

Search domain

x1 ∈ [−5, 10] x2 ∈ [0, 15]

Global minimum

f(x∗) = 12.005
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7.5. Linear Ackley–Hartman problem

The objective of the linear Ackley–Hartman function is a simple linear func-

tion, the inequality constraint is the Ackley function (centered) and the equal-

ity constraint is the “Hartman” function (centered, rescaled) as described by

Picheny et al. [26].

Objective

f(x1, x2, x3, x4) =

4∑
i=1

xi

Inequality constraint

g(x1, x2, x3, x4) = 3 + 20 exp

(
−0.2

√
1

4

∑4
i=1(3xi − 1)2

)
+ exp

(
1

4

∑4
i=1 cos(2π(3xi − 1))

)
− 20− exp(1)

g(x1, x2, x3, x4) ≤ 0

Equality constraint

h(x1, x2, x3, x4) =
1

0.8387

[
−1.1 +

∑4
i=1 Ci exp

(
−
∑4

j=1 aji(xj − pji)2
)]

with

C =


1.0

1.2

3.0

3.2

 , a =


10.0 0.05 3.0 17.0

3.0 10.0 3.5 8.0

17.0 17.0 1.70 0.05

3.5 0.1 10.0 10.0

 , p =


0.131 0.232 0.234 0.404

0.169 0.413 0.145 0.882

0.556 0.830 0.352 0.873

0.012 0.373 0.288 0.574

 .

h(x1, x2, x3, x4) = 0

Search domain

xi ∈ [0, 1] ∀i ∈ [1, ..., 4]

Global minimum

f(x∗) = 0.0516605 and x∗ = [0.0, 0.0, 0.0, 0.0516605]
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