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Predictions and design engineering decisions can be made using a variety of informa-
tion sources that range from experimental data to computer models. These information
sources could consist of different mathematical formulations, different grid resolutions, dif-
ferent physics, or different modeling assumptions that simplify the problem. This leads to
information sources with varying degrees of fidelity, each with an associated accuracy and
querying cost. In this paper, we propose a novel and flexible way to use multi-fidelity informa-
tion sources optimally in the context of airfoil shape optimization using both Xfoil and ADflow.
The new developments are based on Bayesian optimization and kriging metamodeling and
allow the aerodynamic optimization to be sped up. In a constrained optimization example with
15-design variables problem, the proposed approach reduces the total cost by a factor of two
compared to a single Bayesian based fidelity optimization and by a factor of 1.5 compared to
sequential quadratic programming.

Nomenclature

DOE = Design of Experiments
MOE = Mixture of Experts
EGO = Efficient Global Optimization (for unconstrained optimization)
SEGO = Super Efficient Global Optimization (for constrained optimization)
SEGOMOE = SEGO with Mixture of Experts
MFEGO = Multi-Fidelity EGO
MFSEGO = Multi-Fidelity SEGO

I. Introduction

The use of multiple fidelities is particularly interesting for aircraft design decisions where the high-dimensionality
of the design space and the cost of the high fidelity analyses make global optimization near impossible. Many

efforts have used multiple information sources for surrogate modeling (different accuracies for the same quantity of
interest) [1] or optimization [2, 3]. There have also been efforts in modeling the differences in fidelity in an additive way
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[4, 5]. However these approaches fail to work in the general case where different assumptions about the physics of
the problem exist between fidelity levels. In this context, the work of Kennedy and O’Hagan [6] provided powerful
tools for multi-fidelity surrogate modeling which Forrester et al. [7] used for a multi-fidelity extension of the Efficient
Global Optimization algorithm (EGO) [8] for unconstrained problems. In 2013, Le Gratiet [9] proposed an alternative
formulation of multi-fidelity co-kriging with explicit contributions of each fidelity level to the overall model. In 2002,
EGO was extended to constrained problems with the development of SEGO [10]). More recently SEGO was coupled
to MOE (mixture of experts) methodology in order to solve high dimensional variables and constrained optimization
problems such as wing shape aerodynamic optimization in the SEGOMOE framework [11–13]. SEGOMOE will be
used in this work as a reference for surrogate based constrained optimizer with a single high fidelity (HF). Of course, we
will also compare to the standard gradient-based optimizer SNOPT [14]. In practice, the SEGOMOE framework is able
to treat either unconstrained and constrained problem with or without MOE for black box optimization problems.

In this paper these works are used to improve the efficiency of global optimization algorithms which suffer from the
curse of dimensionality. We demonstrate that the use of multiple fidelities helps alleviate this curse and show that we
can perform high-dimensional Bayesian optimization. We begin by reviewing kriging and multi-fidelity co-kriging
formulations; we then present the multi-fidelity extension of EGO called MFEGO. We provide an analysis of the
properties of the proposed algorithm including its global convergence. Finally, we present two kinds of results on
both unconstrained and constrained optimizations of a subsonic airfoil with 9 and 15 design variables and compare the
performance of MFEGO to standard methodologies such as EGO and SNOPT. The constrained version of the algorithms
will be later referred to as SEGO and MFSEGO.

II. Kriging and multi-fidelity co-kriging description
There are multiple ways to build an approximation of a function, such as artificial neural networks (ANN), radial

basis functions (RBF) or support vector regressions (SVR) [7]. In all these metamodels (or surrogate models), a
fundamental assumption is that the quantity of interest y(x) can be written y(x) = ŷ(x) + ε , where ε , the residuals, are
independent identically distributed normal random variables, so that fitting the model ŷ(x) is performed by minimizing
a measure over ε .

Following the same assumptions, the specificity of kriging is that the ‘errors’—or more accurately, the deviations
from the base model—in the predicted values ŷ, are not independent. Rather, we take the view that the errors are a
systematic function of the locations of the samples. The kriging surrogate model ŷ(x) = m(x) + Z(x), is comprised
of two parts: ‘regression’ term m(x) and a functional departure from that regression: Z(x) [10]. We can write the
regression term for the universal kriging as the following:

m(x) =
k∑
j=1

βj fj, (1)

where { f1, . . . , fk} are basis functions of m(x) and βj are coefficients weighting these basis functions. Ordinary kriging
denotes the special case where k = 1 and f1 = 1, meaning the regression function takes the form of a constant, leaving
most of the prediction work to Z(x). Z(x) on the other hand is a Gaussian process with a covariance function:

cov(Z(w), Z(x)) = σ2R(w, x), (2)

where σ2 is a scaling factor known as the process variance, w and x are two design points in Rd and R(w, x) is the spatial
correlation function of the process also known as the kernel of the process. The choice of the kernel influences greatly
the way data is fitted. The kernel quantifies how quickly and smoothly the function changes from point x to point w.

One of the most commonly used kernels in kriging is the squared exponential correlation kernel:

R(z, x) = exp

(
−

d∑
k=1

θ(k)(z(k) − x(k))2
)

(3)

where x ∈ Rd , z ∈ Rd and θ ∈ Rd is a vector of hyperparameters of the kriging model, denoting the correlation along
the different axes of space. This Kernel has the particularity that it only depends on the weighted distance between
points x and z and not their actual positions. It is called a stationary Kernel.

Once we have defined the Kernel, and “fitted” the vector of hyperparameters θ using the vector XT = {x1, . . . , xn}
(with xi ∈ Rd) yielding the responses YT = {y1, . . . , yn} (with yi ∈ R), we can express the mean and covariance of the
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Gaussian Process Z(x):

µZ (x) = r(x, XT )
′R−1(XT , XT )YT (4)

σ2
Z (x) = σ

2(1 − r(x, XT )
′R−1(XT , XT )r(x, XT )) (5)

where x ∈ Rd is the prediction point, and XT is the locations of training set. R(XT , XT ) is the matrix of correlations
among the training points. r(x, XT ), on the other hand, denotes the correlation between the prediction point and the
training points. Note that Eq. (4) ensures the interpolation of the training points. In fact, if we make a prediction at
training point xi , the vector r(xi, XT ) will correspond to the ith line of R(XT , XT ), so that (r(xi, XT )

′R−1(XT , XT ))
′ will

give the ith unit vector and so µZ (xi) = yi .
If we take into account the ‘regression’ term m(x) the prediction becomes:

µ(x) = m(x) + r(x)′R−1(YT − m(x))

which we can also express using the basis introduced in Eq. (1):

µ(x) = f (x)′β + r(x)′R−1(YT − Fβ) (6)

σ2(x) = σ2 [
1 − r(x)′R−1r(x) +(

f (x)′ − r(x)′R−1F
) (

F ′R−1F
) (

f (x)′ − r(x)′R−1F
)] (7)

where β is the vector of coefficients βj introduced in Eq. (1). F is the matrix of the values of the regression basis
function at the positions of the training points, whereas f (x) is the vector of values of these functions at the prediction
point.

In the case of multi-fidelity surrogate models, we can make assumptions to simplify the problem and inform our
model (which results in a decrease of the data needed to learn the model). Lewis and Nash [4] proposed an additive
bridge to link the high and low fidelity of a multigrid approach:

fHF (x) = fLF (x) + γ(x). (8)

When using different grids for a partial differential equation, it is expected that the low and high fidelity would have the
same scale and a very high correlation. The coarse and finer meshes are expected to capture the same low frequencies,
the coarser mesh, however, would fail to capture high-frequency phenomena. γ(x) ∈ R can then be used to capture the
difference. However, in general when modeling multiple fidelities that involve different assumptions on the physics of
the problem (e.g., viscosity, compressibility, or turbulence in aerodynamics models), chances are that the low and high
fidelities will have different scales and sometimes (in rare cases) poor correlations. Kennedy and O’Hagan [6] proposed
a new formulation that takes the correlation and scaling into account by introducing a factor ρ ∈ R in the formulation
above: {

fHF (x) = ρ fLF (x) + δ(x)
with fLF (·) ⊥ δ(·)

(9)

where δ(·) is the discrepancy function tasked with capturing the differences between the low- and high-fidelity functions
beyond scaling. The addition of the term ρ increases the robustness of the model. Le Gratiet [9] proposed an
implementation using the regression term expression of universal kriging introduced in Eq. (1) and extends it to take the
lower fidelity model as a basis function such that the regression term becomes:

m(x) =
k∑
j=1

βj fj + βρ fLF,

where βρ is an estimation of ρ performed by a classic parameter estimation such as the likelihood maximization [15, 16].
Assuming the independence of the high and low-fidelity models (two levels here), the mean and variance of the

high-fidelity model are expressed:

µHF = ρ µLF + µδ (10)

σ2
HF = ρ

2 σ2
LF + σ

2
δ (11)
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The approach can be extended to l levels of fidelity. To make this explicit, let us denote f0, . . . , fl the hierarchically
ranked fidelity codes (from lowest f0 = fLF to highest fl = fHF ). Using the recursive formulation, we write:

µk = ρk−1 µk−1 + µδk (12)

σ2
k = ρ

2
k−1 σ

2
k−1 + σ

2
δk
. (13)

The formulation by Le Gratiet [9], if satisfying the nested DOE requirement, offers explicit expressions of the contribution
of fidelity levels to the uncertainty of the model. The nested DOE requirement states that Xl ⊆ Xl−1 . . . ⊆ X0 where Xi

is the vector of training points of the fidelity i and l is the highest fidelity. With this assumption, a point computed at the
highest fidelity has to be also computed at the lowest fidelities.

We introduce the following notation in Eq. (13):

σ2
δ,k = σ2

δk
for k ∈ {1, . . . , l} (14)

σ2
δ,0 = σ2

0 for k = 0.

We express the uncertainty contribution of the fidelity level k at design point x (corrected from page 163, [9]) as:

σ2
cont(k, x) = σ2

δ,k(x)
l−1∏
j=k

ρ2
j, (15)

which means that the variance contribution of the fidelity level k: (σ2
δ,k

) is scaled using the recursive values of ρj until
we get to the highest fidelity l. These contributions are essential to build Sequential Design or Optimization strategies.

Recent works on linear regression multi-fidelity surrogates have been proposed in [17] where the accuracy is proved
to be better than co-kriging [9] but in the context of this research where we extend design optimization to multi-fidelity
information sources, the access to an estimation of the variance is essential as it gives us an estimation of the error at
each point of the design space. It thus helps us balance exploration/exploitation in the context of global optimization as
explained in the following section.

A Python implementation of multi-fidelity co-kriging based on Le Gratiet’s work can be found in the open source
Surrogate Modeling Toolbox [18] (SMT).∗

III. MFEGO methodology
Bayesian optimization is defined by Močkus [19] as an optimization technique based upon the minimization of

the expected deviation from the exteremum of the studied function. The objective function is treated as a black-box
function. A Bayesian strategy sees the objective as a random function and places a prior over it. The prior captures our
beliefs about the behavior of the function. After gathering the function evaluations, which are treated as data, the prior
is updated to form the posterior distribution over the objective function. The posterior distribution, in turn, is used to
construct an acquisition function (often also referred to as infill sampling criterion) that determines what the next query
point should be.

A. Efficient Global Optimization: EGO
We describe here the expected improvement as well as the EGO algorithm based on Jones et al. [8]. Let F be an

expensive black-box function to be minimized. We sample F at the different locations X = {x1, x2, . . . , xn} yielding the
responses Y = {y1, y2, . . . , yn}. We build a kriging model (also called Gaussian process) with a mean function µ and a
variance function σ2 as presented in Section II. The next step is to compute the expected improvement (EI) criterion. To
do this, let us denote:

fmin = min{y1, y2, . . . , yn},

the expected improvement function (EI) can be expressed:

E[I(x)] = E[max( fmin − Y, 0)] (16)
∗https://www.github.com/SMTorg/smt
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where Y is the random variable following the distributionN(µ(x), σ2(x)). By expressing the right-hand side of Eq. (16)
as an integral, and applying some tedious integration by parts, one can express the expected improvement in closed form:

E[I(x)] =

{
( fmin − µ(x))Φ

(
fmin−µ(x)
σ(x)

)
+ σ(x)φ

(
fmin−µ(x)
σ(x)

)
, if σ > 0

0, if σ = 0
, (17)

where Φ(·) and φ(·) are respectively the cumulative and probability density functions of N(0, 1). Next, we determine
our next sampling point as:

xn+1 = argmax
x
(E[I(x)]) . (18)

We then test the response yn+1 of our black-box function F at xn+1, rebuild the model taking into account the new
information gained, and research the point of maximum expected improvement again. We summarize here the EGO
strategy in Algorithm 1.

Algorithm 1 EGO Algorithm
1: procedure run(F, niter ) . Find the best minimum of F in niter iterations
2: while i ≤ niter do
3: mod ← model(X,Y ) . Surrogate model based on sample vectors X and Y
4: fmin ← minY
5: xi+1 ← argmax EI(mod, fmin) . Choose x that maximizes EI
6: yi+1 ← F(xi+1) . Probe the function at most promising point xi+1
7: X ← X ∪ {xi+1}
8: Y ← Y ∪ {yi+1} . Update the samples vectors
9: i ← i + 1
10: fmin ← minY
11: return fmin . This is the best known solution after niter iterations

B. EGO extension to multi-fidelity: MFEGO
We extend the EGO algorithm to work with multiple fidelities. In practice as the SEGOMOE framework proposed

by Bartoli et al. [11, 12, 13] is capable of handling both unconstrained and constrained problems and this with or
without MOE, we choose to note in this paper the unconstrained version of SEGOMOE without MOE as EGO. The
multi-fidelity is defined as MFEGO. Finally for constrained problems, we will use the notation SEGO for SEGOMOE
without MOE and MFSEGO for its multi-fidelity adaptation.

The main idea of the proposed algorithm is that the search for the most promising sample and the choice of level of
enrichment can be seen as problems to be tackled sequentially. Indeed, we can consider that given a Gaussian process
(GP) or kriging model (mk v GP(µ, σ2)) and a current best ( fmin), EI (or another infill sampling criterion) can be
trusted to find the next most promising point. The choice of the fidelity level of enrichment is a different question that can
be formulated thus: given the uncertainty at a chosen point, is it more interesting to query it at the highest-fidelity level
or at lower ones? This choice of a two-stage decision process (fix most promising point then fidelity level of enrichment)
offers the advantage of greatly reducing the time of infill sampling criterion optimization without being restrictive in any
way. The choice of the fidelity level of enrichment translates an idea stating that one should favor the use of low-fidelity
samples for exploration, and high-fidelity ones for exploitation, while making sure that there is no resampling at the
same location.

Let f0, . . . , fl be the lowest- to highest-fidelity of a quantity of interest, with querying costs c0, . . . , cl . Using the
recursive formulation [9] with a constant ρ, we know that:

fk = ρk−1 fk−1 + δk for k ∈ {1, . . . , l} (19)

ρk−1 = corr( fk, fk−1)
std( fk)

std( fk−1)
(20)

σ2
k = ρ

2
k−1 σ

2
k−1 + σ

2
δk

(21)
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where the notations are std(·) for the standard deviation and corr(·, ·) for the correlation. Using the notations
introduced in Eq. (14), the variance contribution of the fidelity level k at design point x∗ defined by Eq. (15) is recalled
here:

σ2
cont(k, x∗) = σ2

δ,k(x
∗)

l−1∏
j=k

ρ2
j

Due to the necessity of nested DOEs, all lower fidelities are enriched at the same time, the uncertainty reduction
becomes:

σ2
red(k, x∗) =

k∑
i=0

σ2
δ,i(x

∗)

l−1∏
j=i

ρ2
j

The corresponding cost to the enrichment of level of fidelities 0 through k is:

costtotal(k) =
k∑
i=0

ci

We propose the level of enrichment criterion as follows:

t = argmax
k∈(0,...,l)

σ2
red(k, x∗)

costtotal(k)2

where t is the highest fidelity level to be added (the nested DOE imposed to enrich all lower fidelities). It is questionable
whether it is possible to always find a common unit of measurement for the cost of an observation and the variance
reduction, but as the variance scales with the square of the correlation (Eqs. (20) and (21)), it is reasonable to penalize
the uncertainty reduction by the square of the cost. The correlation translates the quantity of information shared between
multiple functions. Note that Le Gratiet [9] introduces a sequential design strategy where the uncertainty is simply
penalized by the cost. Tests were realized with both approaches (penalization with simply the cost, or the square of the
cost), the penalization with the square of the cost constantly gave better results.

C. Algorithm
The choice of level heuristic having been presented, we summarize the proposed strategy in Algorithm 2. We note

{X0, . . . , Xl} the DOEs of the fidelity levels 0 through l. {Y0, . . . ,Yl} are the corresponding responses.
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Algorithm 2 MFEGO Algorithm
1: procedure Enrich_level(model, x∗, costs) .Which fidelities to query
2: compute σ2

red,0(x
∗,model) . Uncertainty reduction by querying at x∗ at level 0

3: crit0 ← σ2
red,0(x

∗,model)/costs[0]2
4: enrich Fidelity 0 . LF has to be computed because of nested DOEs
5: update datasets X0 and Y0
6: for k ∈ {1, . . . , l} do
7: compute σ2

red,k
(x∗,model)

8: critk ← σ2
red,k
(x∗,model)/(

∑k
i=0 costs[i])2

9: if critk ≥ critk−1 or σ2
red,k−1 ≤ ε then . ε : machine resolution

10: enrich Fidelity k
11: update datasets Xk and Yk
12: else
13: break;
14: return updated datasets
15:
16: procedure run(F, niter, costs) . Find the best minimum of F in niter iterations
17: while i ≤ niter do
18: mod ← model({X0, . . . , Xl}, {Y0, . . . ,Yl}) .Multi-fidelity surrogate model
19: fmin ← minYl
20: xi+1 ← argmax EI(mod, fmin) . Choose x that maximizes EI
21: ENRICH_LEVEL(mod, xi+1, costs)
22: i ← i + 1
23: fmin ← minYl
24: return fmin . This is the best known HF solution after niter iterations

Note that the algorithm above does not take into account the constant cost of an iteration (surrogate model creation
and maximization of EI). This can cause the optimization to last longer. A quick fix to take into account the constant
cost of an iteration is to measure and to add that cost as an offset. This translates the idea that when we perform one
iteration of the algorithm, the cost of an update is not only the querying time of the high- or low-fidelity code, but also
the time needed to build the surrogate model and maximize the infill sampling criterion.

As can be seen in line 19 of the MFEGO algorithm, the value of fmin is only updated by the best HF value. That is
because other fidelity codes and datasets are only considered to help MFEGO and are not the objective of optimization.
By only updating the best solution when a high fidelity sample is requested, the optimization is made more robust.
Indeed, low fidelity can only be used to reduce some amount of the expected improvement, which is an amount due to
uncertainty (exploration), rather than knowledge (exploitation). This property ensures that MFEGO converges to the
global optimum of the high-fidelity function (in the same sense that EGO converges to the global optimum of a function).
Note that the criterion integrates the correlation of the fidelity levels and thus makes the algorithm more robust to cases
where there is a poor correlation between fidelity levels. Indeed, when ρk → 0, σ2

red(k,x
∗)

costtotal(k)2
→ 0, prompting the algorithm

to move to the higher fidelities.
It is important that the algorithm will not resample high-fidelity points as the EI at these points is zero. It will also

not resample low-fidelity points as the choice of level criterion will become zero for the low fidelity points, pushing the
algorithm to query the high fidelity ones, thus enhancing the model and solution.

D. Illustration on 1-D analytic problem
The proposed strategy is illustrated on the following 1-D analytic problem [7]:

fHF (x) = (6x − 2)2 sin(2(6x − 2))
fLF (x) = 0.5 fHF + 10(x − 0.5) − 5

In Figure 1 we represent graphically these two fidelity levels. fHF is the expensive function and fLF is the cheap one.
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Fig. 1 Multi-fidelity of the 1-D analytic problem [7].

We make the assumption that the cost ratio between the fidelity levels is 1/1000. We start the optimization with 3
HF samples and 6 LF ones. We define the low- and high-fidelity datasets as:

X0 = {xLF
1 , xLF

2 , xLF
3 , xLF

4 , xLF
5 , xLF

6 } and X1 = {xHF
1 , xHF

2 , xHF
3 }.

The corresponding responses are Y0 and Y1 where Y0 = fLF (X0) and Y1 = fHF (X1). MFEGO algorithm is used to
sequentially search through the space to minimize the maximum of EI. The algorithm has at each step two choices:

1) query once the low fidelity only,
2) query once the low fidelity and once the high fidelity if the EI cannot be reasonably reduced by a low-fidelity

query.
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(a) Initial DOE (b) 2nd iteration

(c) 4th iteration (d) 7th iteration

Fig. 2 Evolution of EI throughout MFEGO iterations on the 1-D analytic problem [7].

Figure 2 shows the reduction of EI resulting from cheap exploration, high-fidelity exploitation andmodel enhancement.
After adding 4 LF points to explore the space and reduce EI (some low-fidelity points can be indistinguishable due
to their proximity in the images above), the image (c) shows the local exploitation and enhancement of the model by
querying the high-fidelity code once. The next HF sample finds the global optimum of the function. To summarize, we
find the optimum after 7 iterations: 7 LF samples and 2 HF samples have been added, whereas the initial DOE was 6 LF
points and 3 HF points (summary in Table 1). The classical mono-fidelity EGO approach with an initial DOE of 4 HF
points required 11 additional HF points to find the global optimum, with a total cost three times higher than the MFEGO
cost (15 compared to 5.013).

HF DOE LF DOE HF Opt LF Opt Cost

MFEGO 3 6 2 7 5.013
EGO 4 - 11 - 15

Table 1 Analytic problem optimization summary.

To finish, we highlight that the choice of level criterion can be used with any exploration-versus-exploitation algorithm
as the same idea can be applied. We use the low fidelity to reduce the uncertainty of the model and thus reduce the
Exploration contribution to the infill sampling criterion. The highest fidelities are then used for the exploitation and
effectively minimize the objective.

IV. Airfoil shape optimization
To validate MFEGO (resp. MFSEGO) and compare it to EGO (resp. SEGO) and later gradient-based approaches,

three optimization problems have been considered:
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1) 9-D unconstrained airfoil shape optimization
2) 15-D unconstrained airfoil shape optimization
3) 15-D airfoil shape optimization with 2 equality constraints

A supervised (analytic) test case is also provided in Appendix (2-D Rosenbrock function).

A. Test case description
For the airfoil shape optimization test case, we used a parametrization based on a mode decomposition proposed by

Li et al. [20]. This decomposition is a Singular Value Decomposition (SVD) on the camber and thickness of an airfoil
database. We use this parametrization to define an airfoil geometry for which we can compute characteristics such as
the Lift Coefficient Cl , Drag Coefficient Cd , and Pitching Moment Cm. The goal is to find the global optimal geometry
of the airfoil as computed by the high-fidelity code ADflow.† ADflow has a Reynolds Averaged Navier–Stokes (RANS)
multi-block flow solver developed in the MDO Lab (University of Michigan) that has been successfully applied to a
variety of aerodynamic shape optimization problems [21–24].

To help MFEGO find the optimum at the lowest cost possible, we use a low-fidelity code Xfoil [25], which takes a
fraction (1/200) of the HF code time to give an approximation of the result using hypotheses simplifying the problem
(linearization, ignoring shocks, compression corrections...). Although Xfoil gives results that are different from ADflow,
it has a strong correlation with the RANS solver. As they both represent the same physical problem, the same trends can
be observed (Lift and Drag tend to increase when we increase the Angle of Attack for example). We use the correlation
between the low and high fidelities to improve the accuracy of the model and perform faster optimizations.

ADflow compute derivatives efficiently thanks to a discrete adjoint method implementation [26]. This has allowed
us to have a gradient-based optimization reference to compare the Bayesian optimization approaches with, especially
considering that 2D airfoil optimizations are unimodal [23].

To solve such optimization problems, work has been done on the noise estimation and regression/re-interpolation of
the multi-fidelity surrogate model based on the work of Forrester et al. [7]; when using multi-fidelity analyses, we can
modify the interpolating co-kriging formulation in Eq. (4) such that each analysis can be regressed appropriately to filter
any noise present in the data [7]. In practice, this is done by adding a noise term λ to the diagonal of the covariance
matrix and estimating it by maximum of likelihood [15, 16].

B. 9-D unconstrained optimization
The main characteristics of the first airfoil shape optimization problem are summarized in Table 2.

Function/variable Description Quantity Range

maximize L/D Lift-to-Drag ratio 1
with respect to α Angle of attack (deg) 1 [0.0, 8.0]

θ Thickness modes 4 [0, 1]
δ Camber modes 4 [0, 1]

Total variables 9
Table 2 Definition of the 9-D unconstrained optimization problem.

The modes design variables have been normalized to fit the segment [0, 1]. The SVD gives as output basis vectors
that can be scaled so that the design variable associated to a particular mode has a range of [0, 1]. In practice the scaled
basis vectors were chosen not only to allow the reconstruction of the airfoil database used by Li et al. [20], but also
an additional margin was added to allow further exploration of new geometries. The Mach number (set to 0.25) and
Reynolds number (set to 6× 106) remain constant. With a cost ratio of 1/200, we obtain the results presented in Figure 3
and Table 3.

†https://github.com/mdolab/adflow

10

D
ow

nl
oa

de
d 

by
 U

N
IV

 O
F 

M
IC

H
IG

A
N

 o
n 

Ju
ly

 5
, 2

01
9 

| h
ttp

://
ar

c.
ai

aa
.o

rg
 | 

D
O

I:
 1

0.
25

14
/6

.2
01

9-
32

36
 

https://github.com/mdolab/adflow


(a) Airfoil shape (b)Cp distribution

Fig. 3 Comparison of EGO and MFEGO resulting airfoil shapes and Cp distributions for an unconstrained
L/D maximization with 9 design variables.

HF DOE LF DOE HF Opt LF Opt Cost Obj

EGO 30 - 40 - 70 108.44
MFEGO 28 58 8 214 37.41 109.94

Table 3 L/D maximization: Comparison of cost and objective for EGO andMFEGO unconstrained optimiza-
tion with 9 design variables.

The columns HF DOE and LF DOE in Table 3 denote the number of samples of each fidelity used to build the initial
design of experiment (DOE). The columns HF Opt and LF Opt are respectively the number of high-fidelity (HF) and
low-fidelity (LF) calls that the optimization routine used after that. The cost is a cost normalized by the HF cost,
so that HF calls contribute 1 to the total cost, and LF calls contribute 1/200. It can be directly interpreted as the
CPU time needed to reach the solution. We should note that EGO and MFEGO were stopped before ‘convergence’
(Bayesian optimization doesn’t have a characterization of optimum, a budget of iterations is generally imposed as
stopping criterion) and that at ‘convergence’, EGO and MFEGO should give the same optimum. But we can see from
Table 3 that with lesser calls we are able to obtain a better best known solution. To understand the reason MFEGO
performs better than EGO, let us define the series ‘Gain’ of a Bayesian optimization at iteration i as:

Gaini = |soli − solDOE |

where soli is the best known solution after the ith iteration and soldoe is the best known solution resulting from the
random sampling of the initial DOE. We use the Gain to compare the efficiency of the EGO and MFEGO algorithms.
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(a) EGO (b) MFEGO

Fig. 4 Comparison of ‘Gain’ of EGO and MFEGO for unconstrained L/D maximization (9 design variables).

Figure 4 shows the Gain (improvement of the objective function compared to the start of the optimization) as a
function of the cost. We see that EGO tends to have long plateaus where the objective does not improve, whereas
MFEGO tends to improve at (almost) every HF call. This is due to the fact that EGO is an exploitation/exploration
compromise. By using the lower-fidelity, MFEGO can explore the design space more cheaply, leaving HF calls for
effective improvement of the objective. This is particularly important when increasing the dimension of the problem.
As we increase the number of design variables, the space to explore becomes bigger. Using multiple fidelities allows
MFEGO to scale better than EGO w.r.t the number of design variables.

C. 15-D unconstrained optimization
We showcase the better scaling by solving the same shape optimization problem with more design variables are

described in Table 4.

Function/variable Description Quantity Range

maximize L/D Lift-to-Drag ratio 1
with respect to α Angle of attack 1 [0.0, 8.0] (◦)

θ Thickness modes 7 [0, 1]
δ Camber modes 7 [0, 1]

Total variables 15
Table 4 Definition of the 15-D unconstrained optimization problem.

The Mach number (set to 0.25) and Reynolds number (set to 6 × 106) remain constant. As this particular problem is
convex and unimodal, the local optimum found by SNOPT is also the global optimum of the function (red dotted line in
Figure 5). We use this optimum as a reference to show the distance between the true optimum and the current solution
of EGO and MFEGO. We can see from Figure 5 that the additional dimensions result in EGO spending a lot of time
on the exploration of the space of the design variables. MFEGO is more immune to this trend as it can use the lower
fidelity to explore the space before committing a HF computation. This observation is consistent across multiple runs.
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(a) EGO (b) MFEGO

Fig. 5 Comparison of ‘Gain’ of EGO andMFEGO for unconstrained L/D maximization (15 Design Variables).
The red dashed line is the optimum found by SNOPT.

One way to make further use of the multi-fidelity kriging is to reduce the cost of the initial DOE. For example,
instead of using 40 HF (for a total cost of 40), we use 16 HF and (approximately) 800 LF (for a total equivalent cost of
(approximately) 20). We see in Figure 6 that by doing so, the space is better mapped, and that this improves greatly
the speed of convergence at a much lower cost. For this problem we had access to the gradient-based optimum using
SNOPT [14]. The dashed vertical blue line in Figure 6 separates the initial DOE building phase and the optimization
driven by the Bayesian algorithm phase that comes after that.

(a) EGO (b) MFEGO

Fig. 6 Comparison of evolution of objective as function of iterations for EGO and MFEGO for unconstrained
L/D maximization with 15 design variables.

Figure 6 shows that MFEGO gives better results than EGO even with a less expensive initial DOE. The low fidelity,
much cheaper, contributes some information to the surrogate model. MFEGO searched through the design space using
437 LF points and probed 8 HF points to attain the SNOPT solution (110.7 for SNOPT against 110.5 for MFEGO). We
summarize the results in Table 5.
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HF DOE LF DOE HF Opt LF Opt Cost Obj

SNOPT (ref) - - 21 - 21 110.7
EGO 40 - 30 - 70 104.9
MFEGO 16 744 8 437 29.89 110.5

Table 5 L/D maximization: Comparison of cost and objective for EGO andMFEGO unconstrained optimiza-
tion with 15 design variables. The reference value is obtained by SNOPT.

D. Constrained optimization
We have shown that for unconstrained optimizations, MFEGO gives superior results to EGO due to the availability

of cheap exploration of the design space. We show in what follows the advantages of multi-fidelity surrogate modeling
for constrained optimization in an approach called MFSEGO. Not only the lower fidelities give access to cheaper
exploration, but the overall model is more accurate resulting in a smaller constraints violation. First, let us introduce the
measure root mean squared constraint violation (RMSCV) for an equality constraint as:

RMSCV =

√√√
1
N

N∑
j=1

(
valj − target

)2

where N is the number of iterations of the algorithm, valj the value of the constraint function at iteration j and target is
the target value of the constraint. A smaller RMSCV means that, on average, the algorithm respects the constraints
more. We compare MFSEGO with SEGO and SNOPT through the following constrained optimization problem given in
Table 6.

Function/variable Description Quantity Range

minimize Cd Drag Coefficient 1
with respect to α Angle of attack 1 [0.0, 8.0] (◦)

θ Thickness modes 7 [0, 1]
δ Camber modes 7 [0, 1]

Total variables 15
subject to CL = 0.5 Lift coefficient 1

Cm = 0 Pitching moment 1
Total constraints 2

Table 6 Definition of the 15-D constrained optimization problem.

The Mach number (set to 0.25) and Reynolds number (set to 6 × 106) remain constant. To test the robustness of
the algorithm we add a Pitching Moment (Cm) constraint. Note that the AIAA Aerodynamic Design Optimization
Discussion Group [27] proposes a pitching moment inequality constraint for the RAE2822 airfoil test case. We
transformed this constraint into an equality constraint to make sure it is active on our problem. For a design to be
accepted, we require that the constraint violation must be below 10−3 for the absolute value of each of the two constraints.

In Table 7, the cost of SNOPT optimizations combines the number of direct problems solved (23), and the number
of adjoint problems solved to compute derivatives (23 × 3 = 69). The overall cost is then calculated as:

costSNOPT =
timeDirect + timeAdjoint

timeDirect
× Niter

where timeDirect is the time needed for solving the Niter direct problems, and timeAdjoint is the time needed to solve
Niter × Nf uncs adjoint problems. Nf uncs is the number of functions evaluated, here 3: Cl for the objective, and Cd and
Cm for the constraints. Niter was 23 in this case. This SNOPT cost is compared to the cost of SEGO and MFSEGO in
Table 7.
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HF DOE LF DOE HF Opt LF Opt Cost Obj Feasible RMSCV

SNOPT (ref) - - 73 - 73 84.68 Yes -
SEGO 40 - 60 - 100 89.188 Yes 8.8e-2
MFSEGO 24 964 18 63 47.135 84.67 Yes 4.9e-3

Table 7 Comparison of SEGO and MFSEGO for constrained optimization with 15 design variables. The
reference value is obtained by SNOPT.

Table 7 shows that MFSEGO is more robust to the addition of new constraints. This is due to the fact that the low
fidelity helps in the surrogate modeling of the Cm constraint as well. As a result, MFSEGO shows a 10 times lower
constraint violation (RMSCV of 4.9e-3 for MFSEGO against 8.8e-2 for EGO). We should note that the small difference
between SNOPT and MFSEGO in the objective should be attributed to the constraints tolerance. We should also point
out that the first feasible solution found by EGO was after 52 HF iterations, whereas MFSEGO only needed 11 HF
samples before finding its first feasible solution as shown in Figure 7 (vertical green dashed line). MFSEGO performed
better than EGO and SNOPT in terms of cost. SNOPT needed 23 direct problems resolutions and 69 adjoint problems
to find its optimal solution. In Figure 7 we show the evolution of the objective and constraint throughout the iterations
of EGO and MFSEGO. The blue dashed line separates the initial DOE phase (random sampling) and the optimization
phase. We show that MFSEGO has less constraints violations (less variations around the green dashed line denoting
less constraint violations).

These three airfoil shape optimization problems demonstrated the good behaviour of the proposed multi-fidelity
approach compared to classical Bayesian algorithms. Nevertheless, investigations will be carried on to increase both the
Mach number, and the dimension of the design space.

(a) SEGO (b) MFSEGO

Fig. 7 Comparison of objective and constraints function of iterations for SEGO (a) and MFSEGO (b) for
optimization of Cd subject to Cl and Cm constraints with 15 design variables.

V. Conclusion
In this paper, we formulate an extension of Bayesian optimization algorithms to work with multi-fidelity information

sources. This approach is successfully coupled to EGO and SEGO to solve both unconstrained and constrained problems.
In this approach, the number of high-fidelity calls is limited as the low fidelity is used to favor the exploration phase
and thus costly high-fidelity simulation is only dedicated to the exploitation phase. We demonstrate the efficiency of
Bayesian optimization in several test cases by enhancing the design space exploration part. For both the unconstrained
or constrained optimization problems, MFEGO and MFSEGO found better results at a 50% lower computational cost
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compared to EGO. All problems have been treated within the SEGOMOE framework that is now extended with this new
capability to handle multi-fidelity.

Future work will integrate the gradient information in the surrogate model and possibly in the devising of new
criteria to allow for faster optimization. The extension to MDO workflow is also a target with studies on multi-fidelity
coupling between two disciplines.
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Appendix

A. Rosenbrock optimization
We present here the results for the Rosenbrock function (See Figure 8) as it is a particularly challenging function to

optimize (the function is extremely flat around the optimum). This optimization problem also allows us to compare
MFEGO algorithm to some of the literature’s state-of-the-art multiple information source optimization algorithms (not
presented here, refer to [3]).

Fig. 8 Contour of the Rosenbrock function
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(a) Initial DOE : 5 HF and 10 LF (b) Final DOE : 5+1 HF and 10+200 LF

Fig. 9 MFEGO’s inital and Final DOE of Rosenbrock function

We set up the optimization to match the one presented in [3] to have results that can be compared and to have a first
order appreciation of the quality of the algorithm:

fHF (x, y) = (1 − x)2 + 100(y − x2)2,

fLF (x, y) = fHF (x, y) + 0.1 sin(10x − 5y),

we assume a cost of 1000 for fHF and 1 for fLF .
The algorithm is started with a budget of 5 high-fidelity samples and 10 low-fidelity samples. Figure 9 shows

MFEGO using the low fidelity to explore the space and more intensely the valley where the optimum is. It finally places
a high-fidelity sample near the theoretical optimum of the function. It only needed one HF sample to do that.

This first result on a problem clearly cut for multiple information sources (assumption that only small variations
exist between low and high fidelities) rather than multi-fidelities, was encouraging to carry on working on the algorithm
and apply it to the aerodynamic shape optimization of an airfoil.
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