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Aerostructural wing optimization
of a regional jet considering
mission fuel burn
High-fidelity multidisciplinary design optimization (MDO) promises rigorous balancing
of the multidisciplinary trade-offs inherent to aircraft wings. However, collaborations
between academia and industry rarely put MDO to the test on practical design problems.
In this work, MDO is applied to the design of a regional jet wing to minimize fuel
burn. High-fidelity aerostructural analysis is used to model the wing and capture trade-
offs between structural weight and aerodynamic performance. A novel approach is used
to calculate fuel burn for climb and descent using a low-fidelity model, improving the
relevancy of the optimization results for short-haul missions. A wing-only geometry is
used to explore the design space and generate a series of Pareto fronts for different
geometric parametrizations. Finally, an aerostructural optimization is conducted with a
complete wing-body-tail geometry of an Embraer regional jet. The optimizer increases
the wingspan and decreases the sweep of the original wing to achieve a 3.6% decrease in
fuel burn.
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1 Introduction
Traditionally, a wing’s planform, airfoil shape, and structure are

designed separately. One of the first steps is determining the area
and basic shape of the wing planform that will support the mission
requirements. Historical data and low-fidelity models can rapidly
obtain this basic wing definition. Eventually, the in-flight wing
shape is designed by aerodynamicists to achieve the desired per-
formance. It is then the job of structural engineers to design a jig
shape and structure that will revert to the flying shape when de-
formed aeroelastically in flight. The wing design is then transferred
back and forth between the aerodynamics and structures groups to
converge on the lightest wing that can satisfy performance require-
ments. While this description is oversimplified, it highlights the
separation between the design of the wing shape and structure.
The complexity inherent to wing design has led to this segmented
approach. Advances in computing power and numerical methods
have enabled multidisciplinary design optimization (MDO) tech-
niques. One of the aims of MDO is to remove artificial barriers
in the design process that may have arisen in the past due to or-
ganizational practicalities. When the entire design can be robustly
optimized simultaneously, it should be possible to converge to a
better design with significantly reduced time and resources.

MDO of wings has been an active area of research for many
years, especially with lower fidelity aerostructural models [1–6].
However, only recently has high-fidelity aerostructural wing opti-
mization reached a level of maturity at which realistic wing design
can be done [7,8]. Some examples include optimization of the
Common Research Model (CRM) [9], the D8 [10], tow-steered
composite wings [11,12], and the Aerion Supersonic AS2 [13].

Despite the work in the academic literature, competition in in-
dustry makes it difficult to determine to what extent these methods
have been adopted and have borne fruit. To bridge this gap be-
tween industry and academia, we collaborated with Embraer to
optimize the wing design of an authentic regional aircraft using
the MDO of Aircraft Configurations with High fidelity (MACH)
framework. This collaboration allows us to evaluate the benefit ob-
tained by applying MDO in the industrial aircraft design process.
The results herein compare the baseline wing to a wing with opti-
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mized structural sizing, airfoil shape, and twist distribution. This
comparison serves as a litmus test for the optimization problem—
significant deviation from the baseline design would indicate a fail-
ure to capture the design requirements adequately. Then we extend
the optimization problem to include planform variables, allowing
the optimizer more freedom to trade between structural weight and
aerodynamic performance. For each wing optimization problem,
we model the aerodynamics of the full aircraft geometry, including
fuselage, wing, and empennage. This way, subtle interactions be-
tween the wing and the rest of the geometry are not neglected, and
we can ensure that the optimized design is properly trimmed. Ad-
ditionally, we can experiment with sizing the horizontal stabilizer
to account for changes in the wing planform.

In the spirit of practical wing design, choosing an objective
function that suitably quantifies the aircraft’s actual performance is
essential. Fuel burn is often an objective function in wing design
optimization problems because it represents a large proportion of
the operating cost. Various methods exist for estimating fuel burn,
each with assumptions and approximations influencing the opti-
mization outcome. For example, the fuel burn calculation can be
based on a single flow condition or aggregate information from
multiple design points. However, using numerical optimization to
design a wing for a single flight condition can have undesired con-
sequences at off-design conditions [14]. A multipoint optimization
problem, where the performance at multiple flight conditions is in-
corporated into the objective function, can produce a more robust
design.

There are different ways to formulate a multipoint objective
function. Commonly, the objective function is a weighted average
of a figure of merit computed at each flight condition. However,
the weighting significantly affects the result, and it is not always
clear how to choose the weights a priori. Liem et al. [15] devised
a method to calculate the weights for 25 different flight conditions
to achieve minimum fuel burn for the CRM geometry. They gener-
ated a surrogate model of aerodynamic coefficients with aerostruc-
tural analyses of the baseline geometry and then calculated the
fuel burn for hundreds of representative missions using the surro-
gate model. Finally, they computed the sensitivity of the total fuel
burn with respect to each of the 25 flight conditions. They used
this as the weight in the objective function for the aerostructural
optimization. Not surprisingly, the aircraft optimized with this
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Table 1 R-jet aircraft Specifications

Description Symbol Units Value

Wingspan 𝑏 m 28.72
Reference area 𝑆 m2 95.4
Aspect ratio A 8.6
Maximum takeoff weight MTOW kg 51,800
Operating empty weight OEW kg 27,900

Fig. 1 Computational grids for the R-jet configuration.

multi-mission objective function weighting performed much better
than a single-point optimum when tested on the full spectrum of
missions.

In the study just cited, all flight conditions included in the fuel
burn aggregation were sampled from the cruise flight phase. The
fuel burn in climb and descent is negligible for an aircraft that
typically flies long-range missions. However, a regional aircraft
regularly flies missions where the fuel used in climb and descent
exceeds that used in cruise. Therefore, if fuel burn is the quanti-
tative measure of aircraft performance, it is important to include
design points from the climb and descent segments in the fuel burn
aggregation. Liem et al. [16] addressed this concern in a paper
similarly focused on regional aircraft design optimization. They
optimized the mission profiles for two missions of varying ranges
by integrating fuel burn across the climb, cruise, and descent seg-
ments. Then they used the optimized mission profiles to compute
fuel burn while optimizing the aerostructural design of the aircraft
wing. In the present work, we also use an integration scheme to ac-
count for the fuel burn in climb and descent. However, in contrast
to Liem et al., we can include the fuel burn integration directly in
the optimization by using a low-fidelity model to analyze the climb
and descent design points. Furthermore, we take a closer look at
how the design is impacted by considering full-mission fuel burn
instead of only considering cruise.

2 Problem Description
2.1 Geometric Modeling. The specifications of the Embraer

regional jet are provided in Table 1. Embraer furnished the CAD
descriptions of the fuselage, wing, and empennage surfaces that
define the outer mold line (OML). Each geometry component is
meshed individually using structured hexahedral cells and then
combined into a single overset mesh (Figure 1). The grid used
for optimization has just over 2 million cells. The finite element
model of the wingbox is based on a structural layout from Embraer.
The wingbox mesh consists of 8,018 quadrilateral cells modeled as
second-order mixed interpolation of tensorial components (MITC)
shell elements. Together, the OML and wingbox form the base-
line design of the aircraft, which has been designated R-jet for this
study.

We also created a supplementary wing-only aircraft model called
R-wing. This wing geometry has the same general specifications

Fig. 2 Computational grids for the R-wing configuration jux-
taposed with the R-jet grids.

Table 2 The R-wing mesh reduces the computational cost of
aerostructural analysis by a factor of 1500 when compared with
the R-jet overset mesh.

Geometry Cells N Cores Solution time Adjoint time

R-jet 2,071,850 79 1261 s 587 s
R-wing 30,528 1 87 s 77 s

detailed in Table 1, but it differs from the R-jet in that it has an
RAE-2822 cross-section, a straight trailing edge, and a conven-
tional wingtip (as opposed to a winglet). The R-wing wingbox has
the same basic layout as the R-jet, but the ribs are all aligned with
the freestream. Table 2 shows the size of the R-wing computational
fluid dynamics (CFD) mesh and the substantial reduction in com-
putational expense when compared with the full R-jet overset mesh.
The R-wing mesh reduces the proc-hours by 1500 and 1000 times
for analysis and a single adjoint, respectively. The primary purpose
for creating the R-wing geometry is to enable rapid optimization
cycles for studying the effects of mission analysis on the optimized
design. However, a side benefit of an inexpensive computational
model is that it accelerates the inevitable troubleshooting process
for a new optimization problem. Generally, optimizer parameters
and scaling factors tuned on the simple model can be used with
the more expensive model.

2.2 Mission Description. The objective of the design prob-
lem is to minimize the average fuel burn of three representative
missions, weighted as follows:

𝑊 fuel = 0.5𝑊fuel,NOM + 0.2𝑊fuel,LR + 0.3𝑊fuel,HS (1)

The details of the three missions can be found in Table 3. The
weights in Equation 1 are related to the proportion of routes a
regional jet typically flies at each range. The total fuel burn for
each of these missions is the difference in weight from takeoff
(𝑊0) to landing (𝑊5), where the basic mission profile is defined
as indicated in Figure 3. It is expected that most of the fuel is
burned in the climb and cruise segments and that the ratio of
climb fuel burn to cruise fuel burn will decrease as the mission
range increases. For instance, Liem et al. [16] found that the climb
and cruise segments accounted for 32% and 26% of the total fuel
burn for a 500 nm mission and 13% and 68% of the total for a
2000 nm mission. For aircraft that typically fly missions where the
distance covered in the climb is small compared to the total mission
range, the benefit of incorporating the climb segment into the total
fuel burn objective is negligible. In such cases, it would still be
essential to consider the flightworthiness requirements of the climb
segment as constraints in the optimization problem. However, as

2 / PREPRINT FOR REVIEW Transactions of the ASME



W0 W1

W2 W3

W4 W5

Takeoff Accelerated climb

Constant velocity climb

Constant Mach climb Cruise Constant Mach descent

Constant velocity descent

Decelerated descent Landing

Fig. 3 Basic mission profile.

Table 3 Mission details

Code Description Range (nm) Mach Altitude (ft) Payload (kg)

NOM Nominal 600 0.78 36,000 10,000
LR Long-range 1000 0.74 36,000 10,000
HS High-speed 300 0.80 36,000 10,000

the ratio of climb range to cruise range increases, it becomes more
important to consider the fuel burned during the climb, mainly
because the fuel burn per mile is greater in climb than in cruise. To
simplify the estimation of climb fuel burn, the hypothetical cruise
fuel burn over the climb distance can be augmented with a climb
fuel increment factor computed from empirical data sets [17].

3 Computational Framework
The MACH framework offers a powerful, automated approach

to aircraft design [18]. The motivation for developing MACH is
to enable efficient, high-fidelity, gradient-based, multidisciplinary
optimization of aircraft. The most significant benefit of the MACH
framework for optimization is that each module embedded in the
optimization loop provides efficient, accurate gradient computation
in addition to its primary function.

The component hierarchy and process flow for aerostructural op-
timization in the MACH framework are shown in the XDSM [19]
diagram in Figure 4. The optimizer changes the design at each
iteration, the MDA solver converges the aerostructural system, and
functions of interest are returned to the optimizer. In this work,
we use the optimizer SNOPT v7.7 [20] through the pyOptSparse
Python interface [21].2 The geometry is parametrized with a free-
form deformation (FFD) scheme [22] implemented in pyGeo [23].
The FFD parametrization applies to the aerodynamic and structural
meshes so that the wingbox is always consistent with the outer
mold line (OML). Changes to the OML are propagated from the
aerodynamic surface nodes to the volume mesh using the inverse-
distance mesh warping algorithm in IDWarp [24] 3. We obtain the
solution of the aerostructural system with a Gauss–Seidel iterative
scheme. ADflow [25,26] is used to obtain a Reynolds-averaged
Navier–Stokes solution of the flow with the Spalart–Allmaras tur-
bulence model. Toolkit for the Analysis of Composite Structures
(TACS) [27] solves for the structure displacement under the aero-
dynamic loads. A Krylov method is used to solve the coupled
adjoint of the multidisciplinary system. The structural node dis-
placements and aerodynamic surface loads are transferred between
the aerodynamic and structural meshes using a rigid link load and
displacement transfer scheme first introduced by Brown [28] and
subsequently described in the context of MACH [18,29]. In ad-
dition to the high-fidelity aerostructural analysis modules, we also
include a module for mission analysis in the studies reported herein
(see Section 3.3).

3.1 Aerodynamic Models. Both high-fidelity and low-fidelity
aerodynamics models are used in the optimization problems pre-
sented in this work. The high-fidelity data are produced using the
coupled aerostructural analysis described previously. To account

2https://github.com/mdolab/pyoptsparse
3https://github.com/mdolab/idwarp

for the lack of fuselage and empennage in the R-wing configura-
tion, we apply an additive drag markup of 𝐷/𝑞 = 0.75 m2 and a
multiplicative lift markup of 1.05. With these markups included,
the mission fuel burn computed for the R-wing configuration is
similar to that of the R-jet configuration. The computational grids
for the aerodynamics and structures are shown in Figure 1 for R-jet
and Figure 2 for R-wing. By contrast, the conceptual-level formu-
las in pyConcept require only a few data points representing the
basic shape of the wing geometry.

pyConcept is a module in the MACH framework that can be
used to calculate geometric parameters such as reference area,
mean aerodynamic chord, and sweep angle. The wing geome-
try is represented by points located along the leading and trailing
edges and the location of maximum thickness on the baseline ge-
ometry. These points are extracted from the baseline wing airfoil
slices and then embedded in the free-form deformation (FFD). Ge-
ometric parameters depend on the FFD design variables via the
embedded points.

pyConcept also provides estimates of aerodynamic performance
based on fundamental geometric properties. For instance, induced
drag can be approximated as

𝐶𝐷,𝑖 =
𝐶2
𝐿

𝜋A 𝑒
, (2)

where bothA and 𝑒 can be calculated solely from geometric prop-
erties and flow conditions. Similarly, parasitic drag is computed
using the component buildup method suggested by Raymer [30],
wherein the drag of each component is a function of the wetted
area, the flat-plate skin friction coefficient, a form factor, and an
interference factor. These estimates are not expected to yield ac-
curate predictions but are intended to capture the trends due to
changing geometric parameters. The novelty of this approach is
that we can maintain the FFD parametrization as a means of adjust-
ing the geometric parameters relevant to the conceptual formulas.
Like everything else in the MACH framework, the fundamental
philosophy in developing this capability was to allow for efficient,
accurate derivative computation. The derivatives of the pyConcept
functions with respect to the geometric parameters are analyti-
cally derived, and the derivatives of the geometric parameters with
respect to the airfoil points are computed with the complex-step
method. The derivatives of the points with respect to the design
variables are already handled in pyGeo. In the end, derivatives of
the pyConcept functions with respect to the design variables are
obtained by combining the three different sets of gradients using
the chain rule.

The required points are extracted from slices of the R-wing and
R-jet wing surfaces. For a given cross-section slice, pyConcept
uses points on the leading and trailing edges and a point on each
of the upper and lower surfaces at the location of the maximum
thickness (Figure 5). With these points, pyConcept can compute
necessary quantities such as planform area, quarter-chord sweep,
and the value and location of the mean aerodynamic chord (MAC).
As already mentioned, these points are embedded in the FFD so
that they are updated as the design changes during the optimization.

On the baseline configuration, the drag estimation from pyCon-
cept matches well with the high-fidelity aerostructural result at the
cruise flow condition (Figure 6). As the speed and altitude of the
flow condition decrease, the low-fidelity analysis underestimates
drag by as much as 20%. The difference between low-fidelity and
high-fidelity analyses on an optimized design is less than or equal to
that of the baseline design. In this instance, the terms high-fidelity
and low-fidelity are used in a relative sense. The CFD mesh used
for the R-wing analysis is relatively coarse and is only used to
obtain rough estimates of aerodynamic performance. However, it
does provide richer information than the pyConcept model.

3.2 Structural Model. TACS was developed by Kennedy and
Martins [31] for the analysis and optimization of the thin-walled
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Fig. 4 XDSM diagram of aerostructural mission optimization with MACH.

Fig. 5 Points are extracted from the R-wing and R-jet wings in order to create a basic representation of the geometry in pyConcept.
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Fig. 6 On both baseline and optimized designs, the low-fidelity drag polar from pyConcept coincides with the high-fidelity
aerostructural result at cruise flow conditions. The error in the low-fidelity method grows as the speed and altitude decrease.
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Fig. 7 Representative depiction of smeared stiffness model.

structures typical in aircraft. Typically, we analyze wingbox struc-
tures comprising ribs, spars, and skins. Each part of the structure
is discretized with quadrilateral shell elements grouped into rect-
angular panels. In the simplest case, the panels are modeled with
isotropic constitutive properties. Alternatively, virtual stiffeners
can be incorporated into the panel stiffness matrix to achieve the
effect of a blade-stiffened panel (see Figure 7) Each panel can have
variables to control panel thickness, stiffener thickness, height, and
pitch.

The structural model predicts stress and buckling limits, which
can be used as constraints in an optimization problem. Rather
than constrain the structural failure on an element-by-element ba-
sis, we aggregate the failure constraints using the Kreisselmeier–
Steinhauser (KS) function. The KS is a conservative approximation
of the maximum, meaning that it will overestimate the failure of
the structure and provide us with a conservative design. Without
constraint aggregation, there would be thousands of structural con-
straints, each of which would require an adjoint calculation. To
make the adjoint approach worthwhile, it is necessary to have far
fewer function outputs than design variables [32, Sec. 6.7].

3.3 Mission Analysis. In this work, the aircraft’s performance
is quantified by the fuel burn throughout a given mission. There are
various methods to estimate fuel burn computationally. For prelim-
inary takeoff weight estimation, the fuel burn for a given mission
segment is reasonably predicted using fuel fractions extracted from
historical data. However, for optimization, it is necessary to derive
a formula relating the fuel burn to the actual design of the aircraft.
The Bréguet range equation (Equation 3) is a simple yet mathe-
matically sound relationship between the aerodynamic, structural,
and propulsion performance of the aircraft:

𝑅 =
𝑉

𝑐𝑇

𝐿

𝐷
ln

𝑊2
𝑊3

(3)

In this equation, 𝑊2 and 𝑊3 refer to the aircraft weight at the
beginning and end of cruise, respectively. Although Equation 3
bears the name of French aviation pioneer Louis Bréguet, according
to Cavcar [33] it was independently derived by Devillers [34] in
1918 and Coffin [35] in 1920. Equation 3 can be further rearranged
to calculate fuel burn as follows:

𝑊2
𝑊3

= exp
(︃
𝑐𝑇 𝑅𝐷

𝑉𝐿

)︃
(4)

This equation succinctly relates the three dominant disciplines af-
fecting fuel burn, enabling the optimizer to balance them appropri-
ately. However, due to the stated assumptions, Equations 3 and 4
apply specifically to a cruise-climb flight mode, in which altitude
steadily increases to enable the constant 𝐿/𝐷 assumption.

For a more general approach to the range and fuel burn estima-
tion, the MACH framework contains a module called pyMissio-
nAnalysis. Liem et al. [16] created pyMissionAnalysis to enable
surrogate-based mission analysis within the context of an aerostruc-
tural optimization problem similar to the one we are considering
here. More details on the approach used are given in their pa-
per. Although the basic function of pyMissionAnalysis remains
the same, we made significant changes to improve its generality

and practicality. Initially, the code was written with internal sur-
rogate models for the aerodynamics (𝐶𝐿 , 𝐶𝐷 , and 𝐶𝑀𝑦

). This
approach required the creation of aerodynamic data sets with re-
spect to altitude, Mach number, angle of attack, and tail angle at
every optimization iteration. To make the code more general, we
replaced the internal surrogate model with a set of callback func-
tions through which the user can provide aerodynamic and engine
data to pyMissionAnalysis. Derivatives of the functions of inter-
est with respect to external design variables are also supported in
the code. Derivatives in pyMissionAnalysis are computed using
automatic differentiation to achieve machine precision.

In pyMissionAnalysis, the various mission segments are broken
up into integration intervals. The fuel burn, distance, and elapsed
time for each interval are computed using integral equations. The
states of the mission model system are the weights at the inter-
val endpoints. A solution to the nonlinear system is obtained by
driving the weight differences between endpoints of consecutive
intervals to zero. As in Liem et al. [16], a line-search stabilized
Newton’s method is used to solve the nonlinear system, and the
Jacobian is calculated using finite differences. For our purposes in
this paper, the solver is set up to perform in the following man-
ner. The user or optimizer provides the solver with a fixed weight,
initial fuel weight, and cruise altitude. The solver converges the
residuals to zero to reach a valid state for the prescribed inputs.
The outputs of the solver are the range, duration, and fuel burn
throughout the mission. Incidentally, the input fuel weight and the
output fuel burn can differ if the aircraft starts with enough fuel to
complete the given mission. The optimizer can choose inputs that
lead to an impractical solution with this setup. For example, the
solution will be invalid if the drag at a given altitude exceeds the
maximum available thrust. Therefore, in addition to the standard
outputs, pyMissionAnalysis computes slack functions that can be
used to force a valid solution. For the climb segments, the slack
function at each node along the mission profile is the actual climb
rate minus the required residual climb rate. The slack function is
the available thrust minus the required thrust for the cruise and de-
scent segments. In an optimization problem, these slack functions
are constrained to be greater than zero.

For the mission profile depicted in Figure 3 the formula to com-
pute fuel burn is

𝑊fuel = 𝑊5

(︃
𝑊0
𝑊1

𝑊1
𝑊2

𝑊2
𝑊3

𝑊3
𝑊4

𝑊4
𝑊5

− 1
)︃

(5)

The final weight of the aircraft, 𝑊5, is the sum of the operating
empty weight (OEW), payload, and reserve fuel. It varies during
the optimization due to structural sizing and wing shape changes.
The fuel fractions in Equation 5 can be calculated in various ways.
At the most basic level, they can be taken from historical data. In
this work, the takeoff (𝑊0/𝑊1) and landing (𝑊4/𝑊5) fuel fractions
are fixed at 0.98 and 0.995, respectively. The climb and descent
fuel burn can also be represented with fixed values. Brooks et
al. [9], for example, the climb and descent fuel fractions are im-
plicitly set to unity. Equation 4 is used to approximate fuel burn
over the entire mission range. This approximation is appropriate
for medium to long-haul flights (Figure 8) and is often used in the
literature. Alternatively, the cruise and descent fuel fractions can
be set to historical values. The cruise fuel burn can be computed
based on a restricted range corresponding to the estimated distance
covered in cruise flight.

For a more general solution, the fuel burn and distance of the
climb, cruise, and descent segments can be integrated using pyMis-
sionAnalysis. For example, the data for Figure 8 was generated
using 31 intervals for climb, 15 intervals for cruise, and 18 in-
tervals for descent. The climb and descent profiles are split into
subregions characterized by accelerated (decelerated), constant cal-
ibrated airspeed (CAS), and constant Mach flight (Figure 3). The
integration intervals are apportioned to the various subregions to
achieve an acceptable resolution across the mission profile. The
mission is solved simultaneously by driving the weight differences
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between endpoints of consecutive intervals to zero. Thousands of
aerodynamic analyses are required to converge to a valid solution,
and thousands more are necessary to calculate sensitivities. The
cost of using CFD for these aerodynamic analyses would be exor-
bitant. Liem et al. [16] used CFD to generate a surrogate model
of aerodynamic properties at each optimization iteration. The sur-
rogate model was then used to efficiently process the aerodynamic
analyses required to solve the mission problem. In this work, we
use a conceptual-level aerodynamic model provided by pyConcept
to reduce the computational cost of the mission analysis.

As stated in the introduction, one of the aims of this study is to
evaluate the impact of using different fuel burn computation meth-
ods on the optimized wing design. The four methods considered
are listed in Table 4. Whenever three values are given, separated
by slashes, they correspond to the nominal, long-range, and high-
speed missions of Table 3. For all methods, pyMissionAnalysis
uses aerodynamic data from pyConcept. In contrast, the Bréguet
equation is always used in conjunction with high-fidelity aerostruc-
tural solutions from MACH. Thus, the Hybrid method combines
low-fidelity data for climb and descent and high-fidelity data for
cruise. The fixed fuel fractions and ranges for the Cruise-Bréguet
method are the values calculated for the baseline configuration us-
ing the Full Mission method. It is worth noting that none of these
methods in and of themselves are novel contributions. Some of
them are frequently used in the literature and have already been
demonstrated in this paper. For example, the Full-Bréguet method
is used in Brooks et al. [9], and the Full Mission method was
used to analyze the missions for Figure 8. The unique contribution
of this study lies in comparing the methods to each other, with
a particular focus on how they impact the final design in a wing
optimization problem.

3.4 Engine Model. The engine performance is represented
using a surrogate model built from engine data of thrust and fuel
consumption with respect to true airspeed, altitude, and temper-
ature. We use a surrogate model from the Surrogate Modeling
Toolbox (SMT)4 called regularized minimal-energy tensor-product
splines (RMTS) [36]. SMT is especially suited to gradient-based
optimization because it provides analytic gradients of the functions
of interest with respect to the independent variables. The available
thrust at a given flight condition is throttled to the value needed
to satisfy minimum residual climb limits (in climb) or offset drag
exactly (in cruise). The relationship between engine fuel consump-
tion and throttle setting is modeled as a quartic polynomial based
on engine data. All engine data was provided by Embraer.

4 Mission Fuel Burn Trade Study
It is instructive to visualize the variation in the relationship be-

tween the climb and cruise segments with respect to mission range,
payload, and cruise altitude. Figure 8 was created by computing the
fuel burn over the climb and cruise segments for missions ranging
from 300 to 2000 nm with varying payloads and cruise altitudes.
The data was generated using the mission analysis, engine model,
and low-fidelity aerodynamic model described in Section 3, ap-
plied to the R-jet aircraft. The first two rows of Figure 8 show the
ratios of climb fuel to cruise fuel and climb range to cruise range,
respectively. As expected, both ratios increase exponentially as
the total mission range decreases. Also, the ratios increase with
increasing payload and cruise altitude. At any given data point,
the magnitude of the fuel ratio is more than twice that of the range
ratio, confirming that the fuel burn per mile is greater in climb
than in cruise. The inverse of the rate of fuel burn per distance
covered, known as the specific range, is plotted in the final row of
Figure 8. Here again, we see that the specific range in cruise is
more than twice that achieved in climb. In these plots, the data
corresponding to the R-jet payload and cruise altitude are high-
lighted in blue. From this preliminary study, it is apparent that it

4https://github.com/SMTorg/smt

is critical to include the climb fuel burn in the objective function
for the 600 nm nominal mission and especially the 300 nm high-
speed mission. In Section 5, we show how this modeling decision
impacts the optimized design.

5 Simple Wing Optimization
In this section, we compare three different methods of mission

analysis and evaluate their impact on the optimization of the R-wing
configuration. We compare multipoint optimizations of the Cruise-
Bréguet and Hybrid methods (considering the three missions of
Table 3).

5.1 Optimization Problem. The R-wing optimization prob-
lem is detailed in Table 5. The objective is to minimize the aggre-
gated fuel burn defined by Equation (1) augmented with operating
empty weight to create a multi-objective problem. The objective
function is

𝛽𝑊 fuel + (1 − 𝛽)OEW (6)

The parameter 𝛽 varies between 0.5 and 1.0 to generate a Pareto
front that illustrates the trade-off between aircraft weight and fuel
burn. The Pareto front was not extended below 𝛽 = 0.5 because
it was apparent from the curve’s trend that further reductions in
structural weight would incur an unacceptable increase in fuel burn.
We also experiment with three different combinations of geometric
design variables. This brings the final tally of optimization runs
to 24: two mission analysis methods, four points along the Pareto
front, and three different sets of design variables.

For each optimization problem, there are four different high-
fidelity analysis points, each of which has a design variable to
control the angle of attack. We consider the following three com-
binations of geometric variables:

(1) Only twist variables (at four spanwise stations)
(2) Twist and planform variables (one span, one sweep, and five

chord scaling)
(3) Twist, planform, and local shape variables

The structure is parametrized with the blade-stiffened panels de-
scribed in Section 3.2. The number of structural design variables
for each case remains the same. Fuel load traction variables are
used to vary the tractions on the skin panels so that, in aggregate,
they impart a load equal to the total fuel mass variable. In turn,
the total fuel mass variable is constrained to be consistent with the
actual fuel burn of the given mission for the current iterate. For
the optimizations using the Hybrid mission analysis, there are two
variables corresponding to the initial and final weights of the climb
and descent segments of the three missions. For these studies, we
do not allow the cruise altitude to vary from 36,000 ft.

Each mission is constrained to achieve its specified range. The
high-fidelity analysis point for each mission is constrained to gen-
erate enough lift to support the mid-cruise weight (the average
of 𝑊2 and 𝑊3). Yield stress and buckling constraints are evalu-
ated under the loads imposed by a 2.5𝑔 pull-up maneuver at Mach
0.734 and 15,000 ft. This design point also carries a payload of
13,000 kg and a full fuel load of 12,900 kg. Yield stress failure
constraints are aggregated over the upper and lower skins sepa-
rately. Buckling constraints are aggregated over the ribs and spars
and separately over the upper skin. The geometry is constrained,
so the thickness cannot decrease at 1% and 99% chord. Addi-
tionally, the thickness cannot decrease below 80% of the original
value at 60% chord. The chord variables are constrained to de-
crease monotonically from root to tip. For the case with shape
variables, constraints are applied to the FFD points at the leading
and trailing edges to ensure that they move in equal and opposite
directions to prevent shearing twist. We also constrain the plan-
form area from decreasing when the planform variables are active.
The Hybrid mission analysis method uses constraints to force the
mission slack functions to be greater than or equal to zero (see
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Table 4 Four methods for calculating the fuel burn and range of a mission.

Full-Bréguet Full Mission Cruise-Bréguet Hybrid

𝑊0/𝑊1 0.98 0.98 0.98 0.98
𝑊1/𝑊2 1.0 pyMissionAnalysis 0.977/0.976/0.977 pyMissionAnalysis
𝑊2/𝑊3 Bréguet pyMissionAnalysis Bréguet Bréguet
𝑊3/𝑊4 1.0 pyMissionAnalysis 0.993/0.993/0.992 pyMissionAnalysis
𝑊4/𝑊5 0.995 0.995 0.995 0.995

Climb range (nm) 0 pyMissionAnalysis 110/116/105 pyMissionAnalysis
Cruise range (nm) 600/1000/300 pyMissionAnalysis 373/769/67 pyMissionAnalysis
Descent range (nm) 0 pyMissionAnalysis 117/115/128 pyMissionAnalysis
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Fig. 8 The ratio of climb fuel burn to cruise fuel burn grows exponentially as mission range decreases. The data corresponding
to the R-jet aircraft description is highlighted in blue.

8 / PREPRINT FOR REVIEW Transactions of the ASME



Table 5 Summary of the full R-wing optimization problem. The quantities for each design variable correspond to the green curve
in Figure 9.

Quantity
minimize 𝛽𝑊 fuel + (1 − 𝛽)OEW 1

with respect to Angle of attack 4
Twist 4
Planform variables (span, chord, sweep) 7
Sectional shape 128
Structural sizing 356
Panel lengths 146
Fuel load tractions 108
Total fuel mass 4
Mission fuel weights 12

subject to Range constraints 3
Trim constraints (𝐿 = 𝑊 ) 4
Structural failure constraints 4
Planform area cannot decrease 1
Wing geometric constraints 76
Miscellaneous mission constraints 159
TACS linear constraints 420
TACS nonlinear constraints 258
Fuel load constraints 4

Section 3.3). The linear constraints in TACS consist of adjacency
constraints to prevent significant differences in thickness between
adjacent panels. The nonlinear constraints in TACS include com-
patibility constraints for the panel lengths and fuel tractions. Fi-
nally, as mentioned previously, each mission has a total fuel mass
variable that must be constrained to match the fuel burn of the
current iterate.

5.2 Results. Figure 9 shows the two sets of Pareto curves gen-
erated for the wing-only optimization. The design variables and
constraints for each of the red, blue, and green curves are given in
the final three columns of Table 5. Each Pareto front is created by
varying 𝛽 between 0.5 and 1. As expected, adding design variables
to the problem shifts the Pareto front to the lower-left-hand corner,
signifying overall improvement in the design. Most of the benefit
of additional geometric freedom is reduced fuel burn, especially for
higher values of 𝛽. Impressively, there is roughly a 1-2% reduction
in fuel burn between the Pareto fronts.

Each point along the Pareto front is accompanied by a scaled
outline of the planform and a number referring to the aspect ratio
of the optimized wing. Interestingly, when only cruise fuel burn is
considered in the optimization objective, the aspect ratios do not
increase significantly beyond the baseline geometry, even when 𝛽 =

1. However, when the full mission fuel burn (including climb and
descent) is considered, the aspect ratios for higher 𝛽 values increase
significantly. The plots in Figure 9 highlight these differences. The
right-hand plot shows the expected trend that the aspect ratio should
increase to decrease fuel burn.

For a regional jet, the mass of fuel burned over a typical mission
is on par with the mass of the wingbox structure. Therefore, the
fuel burn reduction resulting from a decrease in wingbox mass is
closer to that achieved through aerodynamic enhancements than for
an aircraft with a longer mission. This seems to be why accounting
for the fuel burn over the entire mission causes an increase in aspect
ratio for 𝛽 = 1. When only the cruise segment is considered, the
benefit of increasing the aspect ratio does not outweigh the penalty
in fuel burn due to the increase in structural mass required to sup-
port a higher aspect ratio. This result validates our use of mission
analysis for the full configuration optimization study. Perhaps for a
larger aircraft, constant fuel fractions would be sufficient, but for a
regional jet, the gains made in fuel burn reduction over climb and
descent matter.

One possible explanation for the increased emphasis on drag
reduction in the Hybrid method results is that the low-fidelity model
used in the mission calculations over-predicts the possible drag
reduction on the climb and descent segments. On the contrary,
post-optimization high-fidelity analysis of points along the climb
and descent profiles yields more significant drag reductions than
were predicted by the low-fidelity analysis (Figure 10). Thus, it is

more likely that using the low-fidelity aerodynamic analysis in the
mission calculations yields a conservative result for the optimized
design.

In wing design, the optimal aspect ratio depends on the trade-off
between structural weight and fuel burn. The balance between the
structural weight and fuel burn can be adjusted explicitly by con-
trolling their relative importance in a weighted average objective
function. For instance, in our Pareto front studies, the wings opti-
mized for minimum fuel burn (𝛽 = 1) had higher aspect ratios than
those with more emphasis on structural weight (𝛽 = 0.5). On the
other hand, the optimal aspect ratio is implicitly dependent on the
relative magnitudes of the structural and fuel weights, specifically
the variable quantities in the optimization. For a short-haul re-
gional jet, the fuel and the wing structure have weights of similar
magnitude. Thus, the assumptions built into the fuel burn cal-
culation can significantly impact the balance between fuel weight
and structural weight and, by extension, the aspect ratio of the
optimized wing. Modeling the climb segment, and including its
fuel burn in the objective function, increases the incentive for the
optimizer to reduce fuel burn through drag reduction.

6 Full Aircraft Optimization
Now that we have demonstrated the value of including mission

analysis in optimizing a simple wing geometry, we will move on
to optimizing the wing of the full R-jet configuration. The primary
aim of this optimization problem is to see how the optimizer alters
the design of the original regional jet. Because the baseline wing is
already a “good” design, significant differences between the base-
line and optimized designs indicate either a shortcoming of the op-
timization problem or a previously unattainable improvement made
possible with the MDO approach. We start by sizing the wingbox
structure to achieve minimum mass while satisfying the baseline
configuration’s structural constraints. In this way, structural and
fuel weight comparisons between the baseline and optimized de-
signs are fair. The full optimization problem includes variables to
modify the twist distribution, cross-sectional shape, and planform
of the wing, in addition to the structural sizing variables. The hor-
izontal tail can also change in size to match planform changes in
the wing.

As an intermediary step, we also optimize the wing without
planform variables. To differentiate between them, we designate
the reduced problem S+T (shape and twist), while the full problem
is labeled S+T+P (shape, twist, and planform). The result of the
S+T problem informs our assessment of the success of the S+T+P
optimization. While we fully expect the S+T+P optimized design
to perform better than the baseline, it would be difficult to deter-
mine whether the improvements were due to the merits of MDO
or to missing constraints in the optimization problem. The result
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Fig. 9 Pareto fronts from optimizations using different methods of fuel burn calculation.
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of the S+T optimization provides a clearer picture of the benefit
of simultaneously optimizing the wing’s structure, planform, and
cross-sectional shape.

For the S+T+P problem, the tail size is constrained to maintain
the tail volume coefficient of the baseline design. Including a tail
scaling variable and a tail sizing constraint in the optimization
problem is uncommon in the literature, and the effects are not
obvious. The last case presented in this section is a control for
the tail sizing experiment and does not allow the horizontal tail to
scale. In all other respects, it is identical to the S+T+P problem.

6.1 Tail Sizing Constraint. Adjustments to the wing plan-
form can have global consequences on the design of the aircraft.
For instance, we must ensure that the wing’s planform does not
change such that the tail is underpowered to counter the wing mo-
ment. This could occur due to changes in the location of the mean
aerodynamic chord or the overall area of the wing. Raymer [30]
suggests using a tail volume coefficient to match the moments pro-
duced by the tail and the wing. This parameter is purely geomet-
rical, so adding it as a function in pyConcept was straightforward.
The tail volume coefficient is defined as

𝑐tail =
𝐿tail𝑆tail
𝑐𝑆wing

(7)

where
𝐿tail = �̄�tail − �̄�wing

and �̄� is the quarter-chord position of the mean aerodynamic chord
(𝑐) of the lifting surface. Each of the parameters used in the
expression for 𝑐tail is updated in pyConcept based on changes in
the FFDs of the wing and the tail. Additional geometric variables
are assigned to the FFD enclosing the horizontal tail to allow it to
scale up or down to match the changes in the wing planform.

6.2 Optimization Problem. The full optimization problem,
corresponding to the S+T+P case, is listed in Table 6. The op-
timization problem is very similar to the problem solved in Sec-
tion 5, so here we will only mention some differences. The first
significant difference is that the objective function is simply the
composite fuel burn rather than a weighted average of fuel burn
and OEW. The geometric parametrization is also slightly different
for the R-jet. The twist distribution is controlled at six spanwise
stations, whereas the chord can only scale at the mid-span kink,
the wingtip, and the tip of the winglet. The tail rotates to trim
the aircraft and scales to match changes in the planform (following
the tail volume coefficient constraint). We include a constraint to
ensure a 30% margin to buffet in cruise flight for this problem. The
buffet constraint is formulated based on the method of Kenway and
Martins [37] and is applied at the nominal cruise flight condition
under a 1.3𝑔 load. The tail volume coefficient is constrained to be
greater than or equal to the baseline value.

6.3 Results. The percentage differences between the opti-
mized and baseline designs are listed in Table 7. Fuel burn
decreases across all missions, with the most significant percent-
age difference in fuel burn coming from the long-range mission.
The S+T design reduces fuel burn by 1.8% compared to the base-
line. With the addition of planform variables, the optimized design
achieves an additional 1.8% reduction in the objective, double that
of the S+T design. The structural weight of the S+T+P design is
roughly 5% greater than the baseline, whereas the S+T design re-
duces the weight by slightly more than 8%. The increase in weight
on the S+T+P wing is necessary to support an increased aspect
ratio of more than 25% greater than the baseline design. Interest-
ingly, the lift-to-drag ratio increases for nominal and long-range
missions but decreases for the high-speed mission. This is because
longer-range missions burn more fuel and therefore offer more fuel
in terms of fuel burn reduction than is lost on high-speed missions.

Table 6 R-jet optimization problem
Quantity

minimize 𝑊 fuel 1
with respect to Angle of attack 5

Tail rotation 5
Twist 6
Span 1
Sweep 1
Chord scaling 3
Tail scaling 1
Sectional shape 272
Structural sizing 380
Panel lengths 146
Fuel load tractions 156
Total fuel mass 4
Mission fuel weights 12
Total number of design variables 992

subject to Range constraints 3
Trim constraints (𝐿 = 𝑊 , 𝐶𝑀,𝑦 = 0) 10
Structural failure constraints 4
Planform area cannot decrease 1
Tail volume coefficient constraint 1
Wing geometric constraints 180
Buffet onset constraint (1.3𝑔) 1
Miscellaneous mission constraints 159
Structural sizing adjacency constraints 450
Panel length consistency constraints 146
Fuel traction consistency constraints 156
Total fuel mass constraints 4
Fuel volume constraints 4
Total number of design constraints 1119

Table 7 Percentage difference between baseline and opti-
mized R-jet designs.

S+T S+T+P S+T+P (fixed tail)

Fuel burn
Nominal −1.9 −3.6 −3.3
Long-range −2.6 −4.8 −4.5
High-speed −0.7 −1.9 −1.9
Combined −1.8 −3.6 −3.4

Mass
OEW −1.1 +0.7 +0.5
Wing −8.1 +4.9 +3.8

𝐿/𝐷
Nominal +3.1 +6.7 +5.9
Long-range +3.6 +8.0 +7.2
High-speed −1.9 −1.6 −1.4

Geometry
Aspect ratio 0.0 +26.5 +28.8
Span 0.0 +12.5 +13.5
Sweep 0.0 −24.2 −15.2
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Airfoil slices and 𝐶𝑝 distributions of the baseline, S+T, and
S+T+P designs are shown in Figure 11. The most noticeable
change to the S+T airfoils is decreased thickness-to-chord ratio,
especially on the outboard wing. The S+T+P airfoils feature a
decrease in the twist and a more pronounced aft camber than the
baseline. Both optimized designs have a more gradual pressure
rise at the nominal design point, but a shock that did not exist on
the baseline wing appears on these optimized wings. Remarkably,
the 𝐶𝑝 distributions for the long-range design point are similar for
the three designs.

Spanwise distributions of lift, twist, and 𝑡/𝑐 are plotted with
respect to normalized span in Figure 12. The lift distribution for
the S+T design is nearly identical to that of the baseline wing.
Since it has a longer span, the S+T+P design can generate less lift
on the outboard wing, reducing the bending moment caused by tip
loads. In the plot of twist distributions, the effects of passive load
alleviation at the maneuver condition are readily apparent. The
bend-twist coupling in the structure produces a moment to untwist
the wing when deflected under the heavy 2.5𝑔 load. As observed
in the airfoil slices, the plot of 𝑡/𝑐 shows a substantial reduction in
thickness in the outboard wing on both optimized designs.

The most striking differences between the baseline and S+T+P
designs are the aspect ratio increase and wing sweep decrease, as
shown in Figure 13. Basic aerodynamic theory tells us that induced
and wave drag vary inversely with span and sweep, respectively.
However, both span and sweep are tightly coupled with the struc-
tural response of the wing as well. Any increase in span or sweep
generally requires a heavier wing structure to support the increased
moment arm. To determine the correct trade-off between span and
sweep, it is critical to model the wing aerostructurally. In this case,
the optimizer increases the span to reduce induced drag at the cost
of a heavier wing. At the same time, the decrease in wing sweep
lightens the burden on the wing while possibly degrading the high-
speed performance of the wing (as evidenced by the shocks shown
on the high-speed design point in Figure 11). The right side of Fig-
ure 13 shows the deflected state of the optimized wings at cruise
and maneuver conditions.

When the scaling of the horizontal tail is an active design vari-
able, the optimizer chooses to shrink it to reduce drag. Since the
wing area cannot decrease, Equation 7 dictates that the tail area can
only decrease if the wing sweep is reduced. With the horizontal
tail area fixed, the optimizer reduces the wing sweep, but not as
much as in the former case. In the case without a fixed tail area, the
optimizer is degrading the wing’s performance slightly to reap the
benefits of a smaller horizontal tail which leads to better overall
performance. Whereas the designer might be reluctant to sacri-
fice wing performance and therefore arrive at a suboptimal overall
design, the optimizer has no such inhibitions and finds a proper
trade-off between wing performance and tail size. The difference
in the sizes of the horizontal tails can be seen in Figure 13.

Contours of the structural failure and buckling criteria, skin
thickness, and aeroelastic deflection for the baseline and S+T+P
designs are shown in Figure 14. The panel thickness on the upper
and lower skins increases to support the longer wingspan.

7 Conclusion
In Section 5, we demonstrated that different methods of cal-

culating fuel burn can impact the optimized design. We exper-
imented with a method for mission analysis that combined low-
fidelity aerodynamic analyses along the climb and descent seg-
ments with a high-fidelity aerostructural analysis to represent the
mid-cruise point. With this hybrid method, the fuel burn on the
climb and descent segments is included in the objective function
and depends on the geometric parametrization. For short-haul mis-
sions, where the aircraft burns a significant portion of the total fuel
burn in climb, the correct trade-offs are more likely to be achieved
with this approach.

In Section 6, we test the merits of the MACH framework by op-
timizing an Embraer regional jet. The wing optimized with shape,

twist, and planform variables burns 3.6% less fuel than the base-
line design and 1.8% less fuel than a wing optimized with only
shape and twist variables. When all the variables are included, the
wingspan increases substantially, and the wing sweep is reduced
compared to the baseline. The significant differences between the
baseline and optimized wings showcase the advantage of simulta-
neously optimizing all variables while considering the aerostruc-
tural coupling of the wing. As mentioned previously, both span
and sweep are tightly coupled with the structural response of the
wing as well. To determine the correct trade-off between span and
sweep, it is critical to model the wing aerostructurally.

The application of MDO to authentic commercial aircraft is
unique. While the design problem presented herein is a simplified
version of the actual aircraft design problem, it includes many of
the most relevant design considerations. Part of this work’s value
is demonstrating the feasibility of applying MDO to a design prob-
lem at a commercial aircraft company. Additionally, our results
show noticeable differences between the optimized and baseline
designs. The wing design is likely influenced by some constraints
and requirements neglected in this study. Similarly, it is possible
that improving the model accuracy would change the numerical
performance of the optimal result. However, despite such limita-
tions, these results indicate that the simultaneous design of wing-
box structure, wing planform, and wing cross-sectional shapes will
yield a different wing design than when each is designed separately.
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